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ABSTRACT

ESSAYS ON MONEY AND INFORMATION

Luis Araujo

Randall Wright

Social Norms and Money

In an economy where there is no double coincidence of wants and no record-keeping of

past transactions, money is usually seen as the only mechanism that can support exchange.

In this paper we show that, as long as the population is finite and agents are sufficiently

patient, a social norm establishing gift-exchange can substitute for money. However, for

a given discount factor, population growth leads to the breakdown of the social norm.

Additionally, increases in the degree of specialization in the economy can also eventually

undermine the social norm equilibrium. By contrast, a monetary equilibrium exists inde-

pendent of the population size or specialization. We conclude that, while social norms can

support efficient exchange in economies with small populations and limited specialization,

money is essential in economies without these features.

Monetary Equilibrium with Decentralized Trade and Learning

We consider an environment where trade is decentralized and agents only obtain infor-

mation about the state of the economy (the monetary regime) through private histories.

We characterize the dynamics of the market under different regimes and show that changes

in the degree of information transmission in the economy reduce the bank’s willingness to

choose a soft monetary regime. We also study the intertemporal consistency of the bank’s

behavior. We show that in order for patient banks to choose a tight regime they must not

only be concerned with building a good reputation, but also with maintaining their good

reputation by behaving in such a way as to differentiate themselves from impatient banks.
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Chapter 1

Social Norms and Money

1.1 Introduction

The reasons for the existence of money and how it emerged in the economy are fundamental

questions in monetary theory but only recently have they been addressed in a systematic

way. In Kiyotaki and Wright (KW) (1989) and the literature that followed, money exists

to play the role of a medium of exchange. However, there are other mechanisms (or insti-

tutions) in society that can play the same role. Kocherlakota (1998a ,1998b) shows that

every allocation that can be attained with money can be attained with memory as long as

there is perfect and public record-keeping of past transactions. We will show that a social

norm establishing gift-exchange can also be a substitute for money in some situations.1

Memory is excluded, by construction, from the environment considered by KW. Despite

departing from the Walrasian economy in the sense that they make the exchange process

non-trivial, they still preserve the anonymous market as the locus of trade. Hence since

agents are indistinguishable from one another at all times, there is no scope for exploiting

the history of past transactions. This is why there is an interesting role for money. Our

objective is not to reject the idea that money actually plays the role of a medium of exchange.

1The reference paper on norms, though not related to monetary theory, is Kandori (1992). See also
Ellison (1994) and Okuno-Fujiwara and Postlewaite (1995). Moreover, a recent paper by Corbae et alli
(2001) studies how equilibrium with money, gift-exchange and memory can emerge in an environment with
endogenous matching.
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This is an obvious feature of modern societies and we believe that the KW environment

captures in a natural and simple way the fact that money helps to overcome frictions in the

exchange process. Our concern is the study of the conditions under which alternative ways

of addressing the exchange problem may or may not be viable. By considering this issue,

we can have better insight into the reasons money emerged as the dominant mechanism.

The main result in our paper establishes that, while exchange can be supported by a social

norm in small societies, money has an essential role2 when the population is large.

The outline of this chapter is as follows. In the next section, we will first discuss the

conditions under which memory can be used in the KW environment when there is perfect

and public record-keeping. However, our focus is the analysis of an equilibrium with gift-

exchange without record-keeping. The main result of section 1.2 establishes that money is

not essential in small populations. In section 1.3 we discuss how population growth and the

degree of specialization in the economy affects this outcome. We show that when population

grows the social norm equilibrium eventually breaks down. Moreover, an increment in the

degree of specialization has a similar effect. In section 1.4 we show the existence of a

monetary equilibrium in the KW environment with a finite number of agents (previous

analysis of the model always assume a continuum of agents). We prove that money can be

valued as medium of exchange independent of the size of the population. In section 1.5 we

conclude with a discussion of our results.

2Following the literature, we say that money is essential if exists desirable allocations that can be achieved
with money and not without money.
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1.2 The Model

1.2.1 Memory

Consider an economy with a continuum of infinitely-lived agents of k different types, and

with k distinct indivisible goods.3 Following KW (1989) assume that a type j agent only

consumes good j, which yields utility u, and produces good j + 1 (modulo k) at a cost of c

(with u > c). Types are recognized. At every date, agents enter the exchange sector and are

pairwise matched under a uniform random matching technology; i.e., there is a probability

1
k that agent type j will meet, for example, an agent of type m. Finally, agents discount the

future with a discount factor β. Note that, whenever k > 2, there is no double-coincidence

of wants meeting in this economy.

Although we are mainly interested in environments without memory, we begin with the

case of perfect memory as a benchmark for what follows. Suppose that this economy has a

record-keeping device that keeps track of all its transactions, with this device being common

knowledge across agents. In other words, every agent in the economy can observe the history

of transactions of every other agent. Under these assumptions consider an exchange rule

stating the following (denote it rule 1): every time an agent meets someone who likes his

good, he produces the good for him, as long as everyone has done so in the past. If any

agent deviates, the economy reverts to autarky.4 Note that autarky is always an equilibrium

in this economy. But we can show that, for some parameter values, the above rule is an

equilibrium that makes every agent better off than in autarky. Clearly, this rule is efficient.

Lemma 1.1. If β ≥ ck
ck+u−c , the strategy profile associated with rule 1 constitutes a subgame

3The assumption of indivisible goods is made only for simplicity, similar results hold in the divisible goods
case.

4A more formal way of stating this rule is: If agent type j meets an agent type j + 1(modulo k), he will
produce one unit of the good and give it to j + 1. If he meets an agent type j − 1(modulo k), the latter will
produce one unit of the good and give it to j. In any other situation, there is no exchange at all. Finally, if
any agent deviates from this rule the economy reverts to autarky forever.
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perfect Nash equilibrium.

Proof. Let Vc be the expected payoff of an agent on the equilibrium path and let Va = 0

be the value function in autarky. We need to determine if agent j produces for agent j + 1

(modulo k) when they meet. Since the environment is stationary, we only need to check

a one-shot deviation. If he produces the good he receives −c + βVc, and if he does not

produce he receives Va = 0. Thus to follow rule 1 is optimal whenever −c + βVc ≥ 0. One

can calculate:

Vc =
1
k
(u + βVc) +

1
k
(−c + βVc) +

k − 2
k

(0 + βVc) ⇐⇒ Vc =
1

(1 − β)
(u − c)

k

Hence, rule 1 is a subgame perfect Nash equilibrium if and only if:

β ≥ ck

ck + u − c

For any history off the equilibrium path, since the economy reverted to autarky, each agent

receives zero utility. If he deviates and produces a good he will obtain −c. Hence, there are

no deviations off the equilibrium path.

A natural question that arises from the previous lemma is whether it is reasonable to

imagine such a stringent rule. After all, if society has full information regarding past trans-

actions, why not retaliate against only the deviating agent, instead of the whole community?

With this in mind, the following result shows that the same exchange pattern can be gen-

erated with a more reasonable rule (rule 2): every time an agent meets another who likes

his good he produces the good for him, as long as everyone has done so in the past. If any

agent deviates, he doesn’t receive or give goods anymore.
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Lemma 1.2. If β ≥ ck
ck+u−c , the strategy profile associated with rule 2 constitutes a subgame

perfect Nash equilibrium.

Proof. The proof is a straightforward modification of lemma 1.1 and hence is omitted.

We can also modify the rule that implements this efficient outcome by allowing the

possibility of forgiveness, i.e., that punishment occurs for only a finite period of time. The

rule (rule 3) in this case is: every time an agent meets another who likes his good he produces

the good for him, as long as everyone has done so in the past. If any agent deviates, he

doesn’t receive or give goods during T periods. A similar result obtains:5

Lemma 1.3. For every T ≥ 1, if β(1 − βT ) ≥ ck
ck+u−c , the strategy profile associated with

rule 3 constitutes a subgame perfect Nash equilibrium.

Proof. Now, if the agent deviates he receives 0+βVf , where Vf indicates the life-time utility

after deviating under the punishment and forgiving norm. We have that Vf = 0 + βT Vc.

Hence, he will follow rule 3 whenever β(1−βT ) ≥ ck
ck+u−c . Clearly, there will be no deviations

off the equilibrium path.

The objective of the analysis so far is to introduce the idea that equilibrium strategies

can be seen as the product of rules in a society, and the three lemmas above try to capture

the diversity of rules that can arise. Our results are basically the same as those obtained by

Kocherlakota (1998a). The problem with this approach is that the gift-exchange equilibrium

depends upon perfect and public record-keeping of past transactions, which is a very strong

5Note that the minimum discount factor needed to guarantee cooperation in lemma 3 is bigger than in
lemmas 1 and 2, since now the cost of a deviation is smaller. Of course, when T goes to infinity, the range
of β supporting rule 3 coincides with the range of β supporting rules 1 and 2.
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assumption. In the next model we show that record-keeping is not needed, as long as

population is finite and agents are sufficiently patient.

1.2.2 Social Norms

In what follows we are going to use the notion of a contagious equilibrium developed by

Kandori (1992). Under a uniform random matching technology, Kandori shows that coop-

eration can be obtained in a one-shot prisoner’s dilemma with a social norm establishing

that: “....a single defection by a member means the end of the whole community trust,

and a player who sees dishonest behavior starts cheating all of his opponents. As a result,

defection spreads like an epidemic and cooperation in the whole community breaks down.”

(1992, page 69). The contagious defection differs from the rules of punishment previously

considered. First, without public record-keeping of transactions, agents only realize that

a deviation happened when they meet a deviant agent. Moreover, punishment cannot be

personalized. Upon seeing a defection, an agent punishes the whole community, and this is

the reason that such a pattern can be well represented by the idea of a social norm.

Consider the standard KW environment with one change: there is a finite number of

agents (but as many as we wish). Moreover, from now on we are going to assume that there

is no public record-keeping of past transactions in the economy, each agent can only observe

his own private history. We consider first a special case where each agent in the economy

is of a different type. In the next section we relax this assumption. Consider the following

social norm: “every time an agent meets another who likes his good he produces the good,

as long as everyone has done so in the past for him. If at a meeting an agent can produce a

good that the other agent likes but fails to do so, neither agent will ever produce again.”6

6More formally, we have: If agent j meets agent j + 1(module N), he will produce one unit of the good
and give it to j + 1. If he meets agent j − 1(module N), the latter will produce one unit of the good and
give it to j. In any other situation, there is no exchange at all. Finally, if at a meeting an agent can produce
a good that the other agent likes but fails to do so, neither agent will ever produce again.
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Proposition 1.1. For every N , there exists a discount factor β′(depending on N) such

that, for every β ≥ β′, the strategy profile corresponding to the social norm constitutes a

sequential equilibrium.

Proof. Let Vn be the expected payoff on the equilibrium path and let Vb be the expected

payoff of an agent who triggers the contagious punishment. We need to determine if an

agent produces a commodity when he meets another that likes his good. If he follows the

social norm and produces the good he receives −c + βVn. Otherwise he receives 0 + Vb. He

will not deviate whenever βVn−Vb ≥ c. Vb is calculated in appendix A. Since the results are

similar in flavor for N odd or even, we can focus on the case where N is even. We obtain:

Vn =
1

N − 1
(u − c + 2βVn) +

N − 3
N − 1

(βVn) ⇐⇒ Vn =
u − c

(1 − β)(N − 1)

Vb =
∞∑

t=1

βtP (T > t)
u

(N − 1)
,

where P (T > t) indicates the probability that the agent who deviated first is not reached

by the contagious process in period t. An agent will not deviate whenever:

βVn − Vb ≥ c ⇐⇒ β
u − c

(N − 1)(1 − β)
−

∞∑
t=1

βtP (T > t)u
(N − 1)

≥ c (1.1)

When t goes to infinity P (T ≤ t) goes to one (see appendix A). Hence, as β converges to

1 the expression on the left goes to infinity. So, there exists a discount factor β′ (the value

of β that solves the equation β u−c
(N−1)(1−β) −

∞∑
t=1

βtP (T>t)u
(N−1) = c) such that, for all β ≥ β′,

the above inequality is satisfied, implying that our strategy profile is a Nash equilibrium.

It remains to prove that this equilibrium is sequential. Under the assumption that each

agent is of a different type, this is straightforward. First, even if the agent who originally

deviated wanted to slow down the contagious process, he can’t because he already deviated
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with the only agent he can affect (which is the one that likes his good). Second, any other

agent, after being contaminated by the contagious process can obtain at most 0 utility since

there are no more goods available to him in this economy. Hence, he will never produce.

As a result, after any possible history off the equilibrium path, the agents have incentive to

follow the prescription of the social norm and transmit the punishment.

We reiterate, the history of economy-wide transactions is not used to implement the

social norm, only the personal history. However, since it takes more time to punish a

deviant in this environment, as compared to one with memory, the discount factor needed

to support the equilibrium is higher.

Proposition 1.1 establishes conditions under which a social norm can implement gift-

exchange. However, it can also determine when this norm cannot be implemented. For

a fixed β, the value of N is the key factor to be considered. Remember that, under our

assumption that each agent is of a different type, N indicates at the same time population

size and degree of specialization (as measured by the number of types) in the economy.

In the next section we will show that population size is the key variable conducive to the

breakdown of the social norm. When the population increases, defection requires a longer

time to contaminate all agents. If the discount factor does not change, we reach a point

where agents no longer have an incentive to follow the social norm and the equilibrium

breaks down.

Nonetheless, we will show that specialization also affects the social norm equilibrium.

The intuition is the following: suppose the economy is such that there are k types of agents,

with N
k agents per type (N being even or odd depending on the value of k). In this case,

an increment in the value of k leads to a reduction in the future payoff, both on and off the

equilibrium path. This increment has a similar effect as a reduction in the value of β, which
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creates more incentives for an agent to deviate in order to avoid the cost of cooperating

today. An increment in the value of k also affects the speed of the contagion process. Since

interactions which involve exchange become less frequent when k increases, the contagion

process tends to be slower as compared to an economy where k is small.

1.3 Specialization

Up to this point we have been using as a baseline the KW (1989) model, where the de-

scription of an agent type embodies both a specification of preferences over goods and a

production technology. Now (and in the next section), we consider a slightly change in the

environment that allows the separation between the effect of population size and degree of

specialization over the social norm equilibrium.

In particular, consider an economy with N agents (for simplicity, assume N is even)

and K distinct indivisible goods. As in the previous section, agents can only observe their

private histories. Each agent derives utility u from consumption of k goods, although which

goods vary from agent to agent. At every meeting each agent produces one unit of a

commodity, drawn randomly from the set of all commodities. An agent does not consume

his own good. Moreover, we assume that there is no double-coincidence of wants meeting.7

Agents are meet pairwise under a uniform random matching technology, and the distinct

meetings that can come out of each match can be summarized in the following way:

i likes j′s good i does not like j′s good
j likes i′s good 0 σ

j does not like i′s good σ 1 − 2σ

Single-coincidence meetings happen with probability σ, and it captures the extent to

which commodities and tastes are differentiated. We will use σ as a measure of the degree

7This assumption restricts the production technology. It means that, in the joint distribution from which
goods are drawn at every meeting, there is zero probability of an extraction corresponding to a double-
coincidence of wants. We are using this assumption because it makes easier the calculation of payoffs after
a deviation. Moreover, it keeps an structure similar to the model analyzed before.
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of specialization in the economy. If the economy is very specialized, σ is low, i.e., there

are many goods but agents only like a small fraction of them. We can also motivate the

use of σ in the following way: suppose agents specialize in production, for example, agents

that used to produce ten distinct goods now produce only one good. This implies that the

probability of meetings where an agent likes the goods produced by the other goes down,

and this is exactly what happens when σ decreases.

Consider the following social norm, similar to the norm in the previous section: “If an

agent meets another who likes his good he produces the good as long as everyone has done

so in the past for him. If at a meeting an agent can produce a good that the other agent

likes but fails to do so, neither agent will ever produce again.”

We can use a reasoning very similar to the one in Proposition 1.1 to prove that the

strategy profile associated with this social norm constitutes a Nash Equilibrium. After

a deviation from the equilibrium path, the finiteness of the population guarantees that

eventually every agent will not cooperate with probability one. Hence, for a sufficiently

patient agent, there is no incentive to deviate from the equilibrium path.

Formally, if an agent follows the equilibrium he obtains:

Vc =
σ(u − c)
(1 − β)

If an agent deviates from the equilibrium, he obtains (the calculation of Vd is done in

appendix B):8

Vd =
∞∑

t=1

βte1A
tπσu

8To calculate Vd, we calculate first a closed form expression for the contagion process in this environment.
It turns out that the process analyzed by Kandori (1992) can be seen as a particular case of the one analyzed
here.
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where:

e1 = (1, 0, 0, ...., 0), N-dimensional.

A = {(aij)}NxN , where (aij) = Pr(nt+1 = j | nt = i)

π = (πi), N-dimensional, where πi = Pr(defector meets a cooperator | nt = i)

nt = number of defectors at time t

Vd can also be rewritten as (see appendix B):

Vd =
∞∑

t=0

βte1A
tπσu − σu = e1(I − βA)−1πσu − σu

An agent does not deviate as long as −c + βVc ≥ Vd, or:

−c +
βσ(u − c)
(1 − β)

≥ e1(I − βA)−1πσu − σu (1.2)

When β → 1, the expression on the left-hand side goes to infinity while the expression

on the right-hand side is finite (see appendix B). Hence, as long as agents are sufficiently

patient, there are no deviations from the social norm. This reasoning holds for any fixed

population size N . However, when N goes to infinity, the following proposition can be

proved:

Proposition 1.2. For a fixed discount factor β, there exists a value of N (say N ′) such

that, for all N > N ′ the social norm cannot be sustained as a Nash Equilibrium.

The proof is contained in the appendix C and it is similar to a result in Kandori (1992,

page 78). Proposition 1.2 holds for any value of σ, i.e., the social norm breaks down when
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population grows, independent of the degree of specialization in the economy. In what

follows we will change our focus and see what happens when σ changes, for a given value

of N .

In order to see the effects of a change in the degree of specialization over the social

norm equilibrium (if it reinforces the equilibrium or if it weakens it), we need to calculate

sign
(

∂(βVc−Vd)
∂σ

)
. If it is positive, increasing the degree of specialization in the economy

weakens the equilibrium we have been considering so far. We do not have the analytical

solution for this derivative but we analyzed the value of sign
(

∂(βVc−Vd)
∂σ

)
under distinct

population sizes and for various values of β and σ. We considered N = 6, 14; β = 0.1, 0.3,

0.5, 0.7, 0.9 and σ = 0.1, 0.3, 0.5. In all cases, we obtained ∂(βVc−Vd)
∂σ > 0, which supports

the idea that specialization of the economy reduces the incentives to follow the equilibrium.

In the previous section we suggested that specialization can affect the social norm equi-

librium in two distinct ways. First, the reduction of single-coincidence of wants meetings

reduces the gains from trade over time (u− c), having an effect similar to a reduction in the

value of β, which creates more incentives for an agent to deviate. Another possible effect

is that it can make the contagion process slower. It is important to distinguish between

these components because while the former affects payoffs both on and off the equilibrium

path, the latter only affects off equilibrium payoffs. Put it in another way, the first effect

implies that specialization is always going to affect any equilibrium where agents are trading

present cost for future benefits (be it a social norm equilibrium, a monetary equilibrium or

an equilibrium using memory). Now, since specialization reduces the speed of the contagion

process, we have an additional effect which is specific to the social norm equilibrium.

We calculate sign
(

∂Vd
∂σ

)
and sign

(
∂Vd/σ

∂σ

)
for the same range of parameters for N , β and

σ as before. Notice that sign
(

∂Vd/σ
∂σ

)
only considers the effect of σ on Vd in reducing the

speed of the contagion process. We found that Vd is increasing in σ (fixing β), while Vd
σ is

12



decreasing in σ. We can interpret this result in the following way: when the economy gets

more specialized the probability that a defector spreads the contagion (which happens when

he meets a cooperator in a meeting where the latter likes his good) goes down, and this

increases Vd. Nevertheless, the probability that a defector meets an agent that still follows

the norm and has the good he likes also goes down, which reduces his expected payoff.

This latter effect dominates the former leading to an overall reduction on Vd. However, Vc

also goes down in such a way that βVc − Vd decreases. In synthesis, specialization of the

economy reduces the incentives of the agents to follow the social norm.

We can conclude that, in societies where the economy is either too large or too special-

ized, it is unlikely to observe exchange based on a social norm.

1.4 Money

In this section we introduce money in the economy and study the conditions under which

monetary equilibrium exists. We assume no record keeping (memory) and we do not take

into account the possibility that agents use a social norm. This study is in the same spirit of

KW (1993) but we assume a finite population. Previous analysis of this type of model always

use a continuum. We consider the same environment as in the discussion of specialization.

Again, agents can only observe their private histories, they differ in their preferences but

have the same (random) production technology and are matched pairwise by a uniform

random matching process. Moreover, σ is the probability that a meeting results in a single-

coincidence of wants. We also allow a possibly positive probability of a double-coincidence

of wants, δ (our environment is exactly the same as in the previous section if we set δ = 0).

Following the literature, money is indivisible and agents can store at most one unit.

This implies that the only potential monetary exchange involves one unit of money for one

unit of a good. Money enters the economy in the following way. In period one, M units are
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randomly distributed among the agents. Agents are aware of the quantity of money in the

economy, therefore they can calculate the expected payoff under a monetary equilibrium.

In equilibrium an agent’s expected value from a match depends on whether or not

he is holding money. When an agent (for example, agent i) does not have money there

is a probability σ that he is matched with another with a preference for his good. In

this case, with probability M
N−1 the other agent is holding money and so in a monetary

equilibrium agent i produces the good (at a cost c) and obtains a continuation payoff of

βV1. With probability N−1−M
N−1 the other party has no money and there is no trade. There is

a probability σ that i meets an agent which has the good he likes and probability (1−2σ−δ)

that he faces a no-coincidence of wants meeting. In both cases, there is no trade and the

continuation payoff is βV0. Finally, there is a probability δ of a double-coincidence of

wants meeting, in which case, the pair simply exchange goods.9 This reasoning provides the

expected value of not holding money. By a similar reasoning, we can obtain the expected

value of holding money.

Let V0 denote the expected payoff of an agent without money and V1 the expected payoff

of an agent with one unit of money. Then, the above reasoning yields:

V0 = σ[
M

N − 1
(−c + βV1) +

(N − 1 − M)
N − 1

βV0] + σβV0 +

δ[
M

N − 1
(u − c + βV0) +

(N − 1 − M)
N − 1

(u − c + βV0)] + (1 − 2σ − δ)βV0

9When an agent with money meet another without money in a double-coincidence of wants, we cannot
simply assume that agents exchange goods. Another possibility is that they exchange one unit of good
for one unit of money. However, in an environment similar to the one considered here, Rupert, Schindler
and Wright (2000) proved that the unique subgame perfect equilibrium in pure strategies involves a barter
exchange.
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V1 = σ[
(M − 1)
N − 1

βV1 +
(N − M)

N − 1
(u + βV0)] + σβV1 +

δ[
(M − 1)
N − 1

(u − c + βV1) +
(N − M)

N − 1
(u − c + βV1)] + (1 − 2σ − δ)βV1

Notice that since we assumed random production types, one does not need to know who

(which types) have money, which makes it easier to calculate the expected payoff of an

agent.

A monetary equilibrium exists if and only if the cost of production plus the discounted

expected value of holding money exceeds the discounted expected value of not holding

money; i.e., if and only if −c + βV1 ≥ βV0. Letting γ = M
N , and substituting into the

equations for V0 and V1, we can (after some algebraic manipulation) provide the neces-

sary and sufficient conditions for the equilibrium in terms of the primitives of the model.

Proposition 1.3 describes these conditions. Corollary 1.1 establishes that for any population

size there exists a discount factor β′ < 1 such that, for all β ≥ β′ a monetary equilibrium

exists.10.

Proposition 1.3. A monetary equilibrium exists if and only if:

β ≥ 1

1 + (1 − γ)σ (u−c)
c

N
N−1

(1.3)

Proof. For a monetary equilibrium, we must have −c + βV1 ≥ βV0. From the expressions

for V0 and V1, this condition is equivalent to the condition in (3).

10The proof of corollary 1 establishes that β′ is increasing in N . The intuition for this relationship is as
follows. When an agent holds money he hopes to find agents without money in order to obtain the good
he likes. The probability that he will find an agent without money is 1 − M−1

N−1
= 1 − γN−1

N−1
. Now, N > N ′

implies 1 − γN−1
N−1

< 1− γN′−1
N′−1

, i.e., this probability is decreasing with N . As a result, when the population
is large agents must be more patient as compared to small populations in order to accept money.
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Corollary 1.1. For any N , a sufficient condition for a monetary equilibrium is

β ≥ 1

1+(1−γ)σ
(u−c)

c

Proposition 1.3 shows that when agents are sufficiently patient there exists a monetary

equilibrium, regardless of the size of population. This is not the case for a social norm

equilibrium. If the population is large agents have incentive to deviate from the social norm

because it takes a long time until they are reached by the contagion process. However,

in a monetary equilibrium agents must obtain money if they want to consume in a single-

coincidence of wants meeting. Hence, as long as the probability of a single-coincidence of

wants is not too small, a monetary equilibrium always exist. Finally, since agents can only

observe their private histories, i.e, there is no public record of past transactions, we cannot

use memory in order to implement exchange. This reasoning leads to the main result of

the paper, which can be stated as follows: in an economy with a large population there are

allocations that only money can achieve, hence money is essential as a medium of exchange.

Finally, notice that the social norm equilibrium (when it exists) is more efficient than

a monetary equilibrium. The reason is very simple: in a social norm equilibrium, there

exists no coincidence of wants meeting in which exchange does not occur. In other words,

the social norm can implement the best possible allocation. In a monetary equilibrium

this allocation is not attainable, since a necessary condition for exchange to take place in

single-coincidence meetings is that the agent demanding goods must have money.11

11The inneficiency of the monetary equilibrium reflects our assumption that agents are randomly pairwise
matched. Corbae et alli (2001) show that money is efficient as a medium of exchange in an environment
with endogenous random matching.
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1.5 Conclusion

The objective of this chapter is to show that social norms can support exchange in the

Kiyotaki-Wright environment if the population is not too large and agents are sufficiently

patient. The importance of this result is that it gives a possible explanation for the dominant

role of money in modern economies (as compared to social norms). As long as agents believe

that money is valuable as a medium of exchange, we can support a monetary equilibrium,

independent of the size of the population. Hence, even though social norms played a role in

the past sustaining the exchange process, for example in village economies,12 they cannot

support exchange in modern economies.

In general, the basic result obtained here is robust to some modifications of the envi-

ronment. That is, as long as the population is finite and agents are sufficiently patient,

gift-exchange can be supported in the KW environment as a Nash equilibrium. Notwith-

standing, the fact that we could obtain a simple expression for the contagion process (and

the fact that the incentives to follow the norm off the equilibrium path are trivially satisfied

such that the equilibrium is also sequential) depends on the assumption that each agent

specializes in the production and consumption of only one good. This is the reason why we

assumed a model with full specialization in section 1.2.

In sections 1.3 and 1.4 we considered the same model13, an economy where heterogeneity

among agents is reflected only in preferences and not in production technology, and conclude

that population growth leads to the breakdown of the social norm. However, a monetary

equilibrium exists independent of the population size. Moreover, since there is no public

record of past transactions, memory cannot be use as an exchange device. This leads to the

12A good reference in this direction is Landa (1994), which gives a historical analysis of gift-exchange.

13Note that the introduction of a positive probability of a double-coincidence of wants (δ) in section 4 is
completely irrelevant for the result in proposition 3, since this result does not depend on δ. Hence, we can
just set δ = 0 if we want the models in section 3 and 4 to be exactly equal.
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conclusion that money is essential as a medium of exchange in a highly populated economy.

Specialization, by reducing the value of future benefits and the speed of the contagion

process, also increases the incentives for agents to deviate. Hence, even if population size is

fixed, the social norm equilibrium can collapse if the degree of specialization in the economy

increases.

The implications here are distinct from Kocherlakota (1998a,1998b). The conclusion

from Kocherlakota’s work is that if the cost of keeping track of the past is too high, memory

cannot substitute for money, and money becomes essential. Our conclusion is that money

is essential not due to the complexity of the past but to the complexity of the present,

to the fact that is hard to punish defectors in a world that is either too large in terms of

population or too specialized.

1.6 Appendix A

Suppose that some agent (for example, agent i) deviated from the social norm equilibrium.

We want to calculate the probability distribution of the random variable Ti=“number of

periods until agent i is affected by the contagious process” since, after this period, he receives

zero as a payoff. In the model we are analyzing here the distribution of Ti coincides with

the distribution of T=“number of periods until all the population is contaminated by the

contagious process”. This happens for the following reason: the only way an agent can be

affected by the contagious process is when he meets another that was supposed to give him

a good but didn’t. Moreover since each agent is specialized in the production of one good,

at each period there is only one agent that can transmit the defection, namely, the last

agent to be contaminated. In a more general environment, agents could also transmit the

defection through comunication. However, this does not happen in a complete specialized

environment. Since there is only one agent that can produce the good another agent likes, if
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an agent sees a defection he knows that his future payoff can be at most zero, independent of

the transmission of defection through comunication or not. Therefore, we cannot count on

comunication as a source of transmission of the contagious punishment. Finally, the agent

who gives the good to agent i is the last one to be contaminated in the population, which

implies the coincidence of these two distributions. So, from now on, we restrict attention

to the calculation of the distribution of T .

Consider a population of size N , where N is even. The results are similar if N is

odd. After a deviation by agent i (without loss of generality, suppose that i=1) we can

summarize the relevant states of the world by vectors Si ∈ {0, 1}N , where the jth position

in the vector indicates the jth agent, and the subscript i indicates that agents 1 trough i

are not cooperating.

First, we calculate the probability of moving from state i to state j, where i, j =

2, 3, ..., N − 1. Note that we cannot move backwards, that is, we cannot move from i

to j, where j < i. Moreover, since only one agent can transmit the contamination at each

period, we cannot move as well from i to j, where j > i+1. To obtain the probabilities Pij

(Probability of moving from i to j), we need to know what are all the possible partitions of

the population in pairwise matches. By induction, we can find that:

#(N) = (N − 1)#(N − 2)

where #(N) indicates the number of possible partitions of the population across matches.

At each state i, the probability of moving to state i + 1 next period is equal to the number

of partitions where i meets i + 1 divided by the total of partitions. But, for a population

of size N , the number of partitions where i meets i + 1 is exactly equal to the number of

partitions at (N − 2). Looking to the above formulas, we have (for i �= N and i �= 1):
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Pii =
N − 2
N − 1

Pii+1 =
1

N − 1

Finally, since the state SN is absorbing, PNN=1. We want to obtain P (T = t), for every

t. In order to see how this can be done, consider the following diagram:

t = 1 S2

t = 2 S2 S3

t = 3 S2 S3 S4

... ... ... ... ...

t = N − 1 S2 S3 S4 ... ... ... ... ... ... SN−1 SN

... ... ... ... ... ... ... ... ... ... ... ...

t = t S2 S3 S4 ... ... ... ... ... ... SN−1 SN

Notice that to find P (T = t) we need to consider all the possible paths that go from

S2 at t = 1 to SN at T = t and then calculate the probability of each path. Let’s consider

a generic path P . The number of movements to the right that P needs to make in order

to reach SN at T = t is equal to N − 2. The number of down movements that P needs to

make is equal to t − (N − 1). This result holds for any size of population and any number

of periods (as long as t ≥ N − 1. For t < N − 1, P (T = t) = 0). Moreover, since Pii is the

same for every i (i �= N and i �= 1), Pii+1 is the same for every i (i �= N), the probability

of each path is equal to:

(
1

N − 1

)N−2 (
N − 2
N − 1

)t−(N−1)

Hence, we only need to calculate the number of paths. For every path, the last movement

is always to the right. So, we can find the total number of path by calculating the number

of different ways of combining t − 2 objects, the objects being of two different types: type

1 (movements to the right) and type 2 (down movements). This number is equal to:
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(
t − 2

t − (N − 1)

)
=

(t − 2)!
(N − 3)![t − (N − 1)]!

Thus, we have the following result:

P (T = t) =
(

t − 2
t − (N − 1)

) (
1

N − 1

)N−2 (
N − 2
N − 1

)t−(N−1)

From the previous result, we can calculate the expected payoff of an agent after he deviates.

It is equal to:

∞∑
t=1

βtP (T > t)
u

(N − 1)

Agent i does not deviate whenever:

βVc − Vn ≥ c ⇐⇒ β
u − c

(1 − β)(N − 1)
-

∞∑
t=1

βtP (T > t)
u

(N − 1)
≥ c

We will show that, when t goes to infinity, P [T ≤ t] goes to one. First, we obtain lim
t→∞P [T =

t].

lim
t→∞

(
t − 2

t − (N − 1)

) (
1

N − 1

)N−2 (
N − 2
N − 1

)t−(N−1)

(
1

N − 1

)N−2 (
1

(N − 3)!

)
lim
t→∞(t − 2)(t − 3)...(t − (N − 2))

(
N − 2
N − 1

)t−(N−1)

(
1

N − 1

)N−2 (
1

(N − 3)!

)
lim
t→∞(t− 2)

(
N − 2
N − 1

) t−(N−1)
N−3

. lim
t→∞(t− (N − 2))

(
N − 2
N − 1

) t−(N−1)
N−3

(
1

N − 1

)N−2 (
1

(N − 3)!

) N∏
i=4

lim
t→∞

t − (i − 2)(
N−1
N−2

) t−(N−1)
N−3

= 0.
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Hence

lim
t→∞

(
t − 2

t − (N − 1)

) (
1

N − 1

)N−2 (
N − 2
N − 1

)t−(N−1)

= 0 =⇒ lim
t−→∞P [T = t] = 0.

Since P [T ≤ t] = 1 − P [T > t], we have

lim
t→∞P [T ≤ t] = 1.

1.7 Appendix B

Let Dt be equal to the number of defectors at time t. We want to calculate the matrix

A = (aij), where aij = P (Dt+1 = j | Dt = i). First, note that since the number of

defectors is non-decreasing over time, aij = 0 whenever j < i. Moreover, if j ≥ i and

(j − i) > min (Dt, N − Dt), aij = 0 since in order to increase the number of defectors by

(j − i) it is necessary to have at least (j − i) defectors and cooperators. Another situation

where it is easy to identify the value of aij is when i=1. In this case, after a first deviation

of a player, in the next period there will be exactly 2 defectors in the economy. That is,

a1j = 0 if j �= 2 and a1j = 1 if j = 2. The non-trivial case is when i �= 1, j ≥ i and

(j − i) ≤ min (Dt, N − Dt). In this case, we have the following lemma:

Lemma 1.4. If i �= 1, j ≥ i and (j− i) ≤ min (Dt, N − Dt), the probability of moving from

i to j defectors (aij) is equal to:

aij =
max(τ |m−2τ≥j−i)∑

τ=0
A(τ)

(
m−2τ
j−i

)
σ(j−i)(1 − σ)(m−2τ)−(j−i) S(2τ)S(M−(m−2τ))

S(N)

where:

A(τ) =
(

M
m−2τ

)(
m

m−2τ

)
(m − 2τ)!

m = Min(Dt, N − Dt)

M = max(Dt, N − Dt)
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S(x)=number of different ways to make x
2 pairs out of x pairs.

S(0) = 1

Proof. In order to generate (j − i) defectors, we need to have at least (j − i) meetings

between defectors and cooperators. We have to consider situations where the number of

meetings between cooperators and defectors is above (j − i) since not always a cooperator

turns into a defector upon meeting a defector. More specifically we need to consider up

to m meetings between a cooperator and a defector, since this is the maximum possible

number of meetings of this kind.

Fix a number of meetings m − 2τ , for some τ ≥ 0, τ ≤ max(τ | m − 2τ ≥ j − i). The

number of possible distinct partitions in groups of two (where one agent is a cooperator and

another is a defector) with size m−2τ is equal to
(

M
m−2τ

)(
m

m−2τ

)
(m−2τ)!. Now, for each of

these partitions, the chance of the number of defectors increase to (j− i) follows a binomial

distribution with parameter σ, and is equal to
(
m−2τ
j−i

)
σ(j−i)(1− σ)[(m−2τ)−(j−i)].Now, since

we are fixing attention on only m − 2τ meetings between a defector and a cooperator, the

number of possible ways of choosing pairs with the rest of the population where cooperator

meets cooperator and defector meets defector is equal to S(2τ)S(M−(m−2τ)). By varying

τ for all its possible values, we obtain the number of possible partitions of the population

in pairs such that the number of defectors increase to (j − i), and dividing this number by

S(N) gives the probability we are looking for.

Notice that the contagion process described by Kandori (1989, 1992) can be seen as a

particular case of the one analyzed here, which happens when a cooperator always starts to

defect after meeting a defector, i.e., when σ = 1. Now, we can calculate the payoff obtained

by an agent who deviates from the proposed social norm equilibrium. First, an agent only

has incentive to deviate when he meets another agent that has a preference for his good in
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a single-coincidence meeting. Hence, the overall payoff after a deviation is equal to:

Vd =
∞∑

t=1

βte1A
tπσu

Vd can also be rewritten as:

Vd =
∞∑

t=0

βte1A
tπσu − σu

If we replace the last column of A by zeros (this replacement is justified because Dt = N

is the absorbing state and the N th element of π is zero) the following equality holds (where

A′ is the matrix obtained from A after the replacement):

(I − βA)−1π =
∞∑

t=0

βtAtπ =
∞∑

t=0

βtA′tπ = (I − βA′)−1π

Now, since the number of defectors never declines A′ is upper-triangular and so is (I−A′).

The determinant of an upper-triangular matrix is the product of its diagonal elements, which

are all strictly positive for (I − A′). Hence, (I − βA′)−1π < ∞ ⇐⇒ (I − βA)−1π < ∞. We

can rewrite Vd as:

Vd = e1(I − βA)−1πσu − σu

An agent will not deviate as long as:

−c + βVc ≥ Vd

or:

−c +
βσ(u − c)
(1 − β)

≥ e1(I − βA)−1πσu − σu

When β → 1, the expression on the left-hand side goes to infinity while the expression

on the right-hand side is finite. Hence, as long as agents are sufficiently patient, there will

be no deviations from the social norm equilibrium.
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1.8 Appendix C

Proof of Proposition 2 (based on Kandori, 1992, page 78, proposition 3):

Suppose that an agent wants to deviate from the social norm equilibrium, at a given

point in time (say T ). Let Vc and Vd be the continuation payoffs for this agent when he

follows and when he deviates from the equilibrium. Let It be the set of players whose

behavior at T + t is affected by the defection at time T . If player i is the defector at T ,

I1 = {i, µ(i, T ))} and for t > 1, It = {j; j ∈ It−1 or j = µ(k, t − 1) for some k ∈ It−1},

where µ(i, t) indicates the agent who matches with i at date t. The number of players in

It is maximal when every member of It is matched with a member of N − It and the latter

is supposed to receive a good from the former but did not receive (so that he turns into a

defector in the next period). Hence, an upper bound of #It is min{2t, N}. So, min{2t,N}
N−1

is an upper bound of the probability for the agent who deviated at T to meet a defector at

T + t. This reasoning implies the following inequality:

Vc − Vd ≤
∞∑

t=1

βt min
{2t−1, N}

N − 1
u −→ 0 when N −→ ∞

Finally, we have:

lim
N−→∞

βVc − Vd = 0 < c,

which implies that there exists a value of N (say N ′) such that, for every N > N ′, the social

norm cannot be supported as a Nash Equilibrium.
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Chapter 2

Monetary Equilibrium with
Decentralized Trade and Learning

(with Braz Camargo)

2.1 Introduction

In most economies the right to print fiat money is a government monopoly. Agreement about

the propriety of this monopoly appears widespread. Even a fierce defender of free market

systems like Milton Friedman has argued that the very nature of fiat money calls for a

government role. Friedman has said, “The technical monopoly character of a pure fiduciary

currency makes essential the setting of some external limit on its amount...governmental

responsibility for the monetary system has of course been long and widely recognized” (1959,

page 8). The idea that the stability of a monetary economy must rely on the exogenous

regulation from the government is based on the belief that private agents do not have enough

incentives to provide a stable value for money. According to this view, private agents do

not set an external limit on the amount of money in circulation and end up printing more

money than agents expect, i.e., they overissue. Ritter (1995), for example, argues that

only the government is large and patient enough to resist this temptation. Though it is

true that the role of the government as an external provider of monetary stability cannot

be underestimated, we believe that a more comprehensive theory on the determinants of
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monetary stability needs to take into account the evolution of the society’s ability to prevent

overissue.

We construct a model that takes into account both exogenous and endogenous factors

affecting the provision of monetary stability. Exogenous factors correspond to the bank’s

(the agent in control of money creation) behavior regarding the supply of money. This

behavior is mainly determined by the bank’s patience, which is an exogenous parameter.

Endogenous factors correspond to the society’s ability to observe the bank’s behavior. We

describe this ability by assuming that, even though agents do not know the bank’s actual

action, they can learn about it over time, from the history of the transactions in the market.

We obtain, in an environment where learning only happens slowly over time, that an

impatient bank can exploit the agent’s misinformation and overissue while maintaining the

value of money in the short-run. Agents eventually realize the bank’s actual behavior and

monetary trade breaks down. However, it takes time until a complete breakdown of trade

happens. In this environment, monetary stability depends upon the bank’s patience, hence

exogenous factors play a key role.

Now consider an environment where agents accumulate a lot of information about the

bank’s decision in a short period of time. In this situation, agents are able to efficiently

monitor the bank’s behavior and impatient banks prefer not to overissue in order to avoid

the breakdown of monetary trade.

Society’s ability to gather information and learn about the state of the economy changes

over time. In modern economies, dissemination of information about decisions made by

banks or the government is much faster than in the past. Therefore the necessity and ade-

quacy of imposing stringent controls over the creation of fiat-money needs to be reevaluated.

It may be true that government intervention played a central role in the past, regulating

money creation in a poorly informed economy. However, this may not be necessary in
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modern economies.

We describe the market in our economy using a random search model (see Kiyotaki and

Wright (1993)). These models analyze how money can be endogenously valued as a medium

of exchange due to the presence of frictions in the trading process. It is shown that in a

completely decentralized economy, where agents are pairwise and randomly matched, trade

is constrained by the double coincidence of wants. Money emerges as a medium of exchange

that helps overcome these trade constraints. Usually, it is assumed that agents know the

amount of money in circulation. In our paper we relax this assumption and consider an

economy where information with respect to the actual value of money is subject to the

same constraint as the exchange process itself, i.e., agents only obtain information from

the meetings in which they participate. In this sense, our model lies in the same tradition

as Wolinsky (1990), which also analyzes information transmission in pairwise meetings.

We believe that environments with decentralized trade constitute a natural framework to

address incomplete information in a market economy. The same technology that restricts

and enables trade in these settings can be used to describe the transmission of information

throughout the economy. There is no need to adopt a particular information structure as

an additional primitive of the model.1

In order to solve for the agent’s problem in our environment we take into account what

decisions an agent makes after every possible history. We solve for the agent’s optimal

decision rule by describing our problem in terms of a two-armed bandit (see Rothschild

(1974) and Banks and Sundaram (1992)). We obtain that maximizing agents adopt a cut-

off rule. There exists a threshold such that, if an agent has a belief that the bank overissues

1There is a growing literature of search models dealing with incomplete information regarding the amount
of money in circulation. Katzman, Kennan and Wallace (2002), for example, assume that only a subset of
agents are informed about the exact amount of money in the economy. See also Wallace (1997). For a model
outside the search literature discussing how the presence of different information structures affects trade, see
Jones and Manuelli (2001).
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greater than this threshold, he does not accept money and stays in autarky. Alternatively,

he accepts money and goes to the market. Another interesting feature of our solution is

that an agent may stay in the market even when his flow payoff is smaller than the payoff

of leaving and moving to autarky. The reason is that, by staying in the market, an agent

accumulates more information and form better beliefs about the bank’s behavior.

We also describe the agent’s behavior when time goes to infinity. We show that, under a

soft monetary regime (where the bank issues more money than agents expect) the measure

of agents accepting money converges to zero. Alternatively, under a tight monetary regime

a positive measure of agents always accept money from the bank. The intuition for this

result runs as follows. Since an agent takes into account his whole private history when

making a decision, as time goes on the effect of additional histories over his belief reduces.

Hence, the length of a “bad history” (a history that leads an agent to leave the market

and move to autarky) necessary to dominate long “good histories” increases over time. In

particular, sufficiently long good histories cannot be entirely dominated by bad histories.

In the first part of this chapter we assume that the bank, after making a decision on how

much money to issue, cannot change its choice. This assumption simplifies our problem but

has the drawback of precluding an analysis of the bank’s actual incentives to follow the same

policy over time. In section 6 we consider the case where the bank can change its behavior

at any point in time. We show that there is an equilibrium where a sufficiently patient bank

always chooses a low amount of money and a sufficiently impatient bank always overissue,

as long as there is a small probability that the bank suffers an exogenous shock that affects

its preferences. In the absence of small preference shocks, a patient bank have incentives to

not overissue only until agents become sufficiently convinced that it will never overissue in

the future. At this point, the effect of additional histories over the posterior becomes very

small, so that even after observing many agents with money over time, the belief that the
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bank is patient still remains close to one. In this situation the bank’s incentive to issue a low

amount of money breaks down, and there is overissue. Since agents are forward looking they

anticipate this and the monetary equilibrium collapses. However, if there is an exogenous

probability that the bank can become impatient, the agent’s posterior is bounded away

from one. In this situation, a sufficiently patient bank never overissues in an attempt to

distinguish itself from an impatient bank.2

We can summarize our discussion in the following way. In an economy where agents

learn about the environment from their private histories, an increment in the amount of

information obtained through meetings in the market is beneficial in the sense that it

precludes impatient banks to overissue. However, when the bank is allowed to change its

decision at any point in time, we also need to introduce some degree of exogenously driven

uncertainty about the bank’s type if we want to support an equilibrium where patient banks

never overissue.

The outline of this chapter is as follows. In the next section, we describe the physical

and informational environment. In section 2.3 we discuss the agent’s problem. In section

2.4 we describe the dynamics of the economy under distinct monetary regimes. Section 2.5

analyzes the bank’s problem. Section 2.6 describes what happens when we allow the bank

to change its behavior in every period. Section 2.7 concludes.

2.2 Environment

2.2.1 Market and Autarky

Consider an economy with a [0,1] continuum of infinitely lived agents and K indivisible

goods. Each agent derives direct utility u from the consumption of only one of the K

2This reasoning is directly related to Mailath and Samuelson (1998). See also Mailath and Samuelson
(2001).
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goods, and the distribution of tastes across agents is uniform. In the first period each agent

is endowed with one unit of a good. An agent’s endowment does not give any direct utility

but it can be used either as an input to produce consumption goods or as a medium of

exchange in the market. The production of consumption goods takes time so that an agent

cannot produce and at the same time go to the market. We say that an agent is in autarky

if he decides to produce, and we set the overall utility obtained in autarky in every period

equal to A. Agent’s discount the future at a rate β.

In the economy there also exists an infinitely lived large agent, with a technology to print

fiat money and a technology to store goods over time, but with no production technology.

This agent is denoted bank. The bank derives utility from seigniorage, the revenue raised

from money issue. We capture the idea of seigniorage by assuming that the bank’s utility

comes from the amount of goods it stores during a period, and goods are obtained from

agents, in exchange for money. More precisely, in every period the bank proposes to a

fraction m of the population entering in the market an exchange of money for goods. Agents

do not know which value of m was chosen by the bank. To simplify our analysis we assume

that money is indivisible and all agents (with the bank’s exception) can store at most one

unit of it. This implies that the only possible exchange is one unit of money for one unit of

good. We control for the effects of this restriction in a similar way as in Katzman, Kennan

and Wallace (2002), comparing our results to the case where agents are completely informed

about the value of m. In the end of this section we analyze in detail the implications of the

indivisibility of goods and money. Finally, the bank discounts the future at a rate δ.

The market is organized as follows. We have K distinct sectors, each one specialized in

the exchange of one good. Agents can identify the sector but inside each sector they are

pairwise matched under a uniform random matching technology. Hence, if an agent wants

money he goes to the sector which trades his endowment and search for an agent with
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money. By the other way, if he has money he goes to the sector that trades the good he

likes and search for an agent with the good. Upon consuming the good, the agent obtains

utility u and receives a new endowment. In other words, an agent must consume in order

to obtain a new endowment.3

We assume that in every period any agent that goes to the market faces n rounds of

meetings (n > 1). Agents do not discount between meetings in a period. 4 After n rounds,

if an agent ends up with money, he can come back to the bank and exchange it for one

unit of the good he likes, i.e., the bank has to redeem the notes. The number of meetings

n is a key parameter in our model. It is used as a measure of the degree of information

transmission in the economy. Changes in the value of n affect the amount of information

an agent can obtain, which in turn affects the agents’ and the bank’s behavior.

We can summarize the decision problem faced by an agent in this economy as follows.

In the beginning of every period each agent decides between staying in autarky or going to

the market. If he stays in autarky he produces consumption goods and obtains utility A.

If he goes to the market, he first has the opportunity of going to the bank in an attempt to

exchange his endowment for money. After that, he goes to the market and faces n rounds of

meetings. After these meetings, agents with money can go back to the bank and exchange

their money for the good they like. In the next period they face the same problem again.

2.2.2 Information

In our environment the frictions of the exchange process are a consequence of the fact that

trade is decentralized. In what follows we assume that the transmission of information in

3We adopt this particular market structure just for simplicity. As we show in the next section, it delivers
a simple expression for the agent’s value functions as compared to the ones in a more general model of search
and money. The results of the paper do not change under a more general specification.

4This assumption gives a simple expression for agent’s flow expected payoff, but is not particularly
important for any of the results in the paper.
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the economy is subject to the same constraint as trade itself. In other words, agents can

only gather information through their private histories. The main decision faced by each

agent is whether to accept money and participate in trade or not, a decision which crucially

depends upon the agent’s expectation about the value of m chosen by the bank. In order

to form this expectation agents will look at their personal experiences in the market.

We assume that the bank can only choose between two levels of m, mH and mL, with

mH > mL. This assumption keeps the environment simple and delivers the main result

we are pursuing, namely, the description of an economy where the bank faces a trade-off

between present and future gains when deciding which value of m to choose. A high value

of m gives a high flow of utility in the short-run but over time a large fraction of agents

leave the market and stay in autarky after realizing (through their histories) that there is

too much money in circulation.

In Section 5 we discuss in more detail the problem faced by the bank. Until there we

just assume that there is a parameter θ0 ∈ (0, 1), which is common knowledge across agents,

that indicates the probability the bank sets m = mH . In this case, we say the bank is of

type H (high type). Alternatively, we say the economy is under a soft monetary regime.

Analogously, a bank is of type L (low type) if it sets m = mL (and the economy is said to be

under a tight monetary regime). We restrict attention first to the case where a bank’s type

do not change over time: a bank type j will choose mj in every period, for j = H, L. This

assumption simplifies the problem faced by the agents. However, it precludes an analysis

of the bank’s intertemporal behavior. In section 6 we relax this assumption and consider

the case where the bank can change its choice at any point in time.

Agents update beliefs from their private histories. A private history at t is the record

of all meetings in which an agent participated up to that point. This record includes the

meeting of an agent with the bank, the money or good holdings of the agent and of all
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his matches and what happened in each of these meetings. However, since an agent is

only interested in forming a belief with respect to the bank’s type, the relevant piece of

information is only the record of his (the agent) money holding in the beginning of every

period and the money holdings of his partners over time. Moreover, notice that any history

only includes data while the agent is in the market, since an agent does not meet anyone

when he is in autarky. In the next section we show that when an agent leaves to autarky his

optimal decision is to stay in autarky forever. Hence, we can summarize the set of relevant

histories up to date t by the set {0, 1}(t−1)(n+1), where (t − 1)(n + 1) reflects the fact that

in every period when an agent is in the market he meets the bank and n other agents. For

example, if t = 2 and n = 3, the vector (0, 1, 1, 0) indicates a history where the agent did

not receive money from the bank, met agents with money in his first two meetings, and met

an agent without money in his last meeting in period 1.

Let θ(ht) indicate the belief the bank is of type H, given a history ht. Let c(ht) indicate

the cardinality of the history ht, i.e., c(ht) =
(t−1)(n+1)∑

j=1
hj , where hj ∈ {0, 1}. From Bayes

rule, we have

θ(ht) =
m

c(ht)
H (1 − mH)(t−1)(n+1)−c(ht)θ0

m
c(ht)
H (1 − mH)(t−1)(n+1)−c(ht)θ0 + m

c(ht)
L (1 − mL)(t−1)(n+1)−c(ht)(1 − θ0)

θ(h1) = θ0

An agent’s belief depends only upon the cardinality of the history. Since the fraction of

money in the economy does not change over time, it does not matter the order in which

agents with money are met, only the total number of these agents. From now on, we use

θ(ht) and θ(c(ht)) interchangeably. Moreover, notice that θ(ht) is an increasing function of

c(ht), i.e., if an agent meets more people with money over a period of time, he increases his
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posterior that the bank is of a high type.

2.2.3 The Role of Indivisibility

As stated before, we assume throughout the paper that goods and money are indivisible

and agents can only trade one unit of money for one unit of good. This assumption greatly

simplifies the agent’s Bayesian updating with respect to the bank’s type since we can sum-

marize all the relevant information in a history by a sequence of zeros and ones. In the

case of divisible goods (or divisible money) we would have to specify and solve a bargaining

problem for every meeting at every point in time, after every pair of private histories up to

that point. Moreover, a history would have to include the decisions of the agent’s match in

every previous meeting. We avoid all this complexity when money and goods are indivisible.

Katzman, Kennan and Wallace (2002) deal with bargaining issues in a search envi-

ronment with incomplete information and divisible goods. In their set up information is

exogenously given to a fraction of agents in every period. In our model information comes

endogenously, from the agent’s private histories. Wallace (1997) also discusses the effects

of money changes under incomplete information. He considers a model with two periods

where information about the amount of money in the economy is not known in the first

period but it is fully revealed to agents in the second period. However, Wallace (1997, page

1304) states that: “In contrast to the assumption that the realized change in the quantity

of money is revealed to everyone with a one-period lag, the natural assumption is that it is

never revealed.” This is exactly what happens in our model. Agents learn about the actual

amount of money in circulation only in the long-run, after sufficiently long and informative

histories.

Models with divisible goods have the advantage of being able to analyze the impact

of changes in the amount of money in two dimensions: an extensive-margin, which refers

to the effect of increments in the amount of money over the number of trade-meetings
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(given by m(1 − m)); and an intensive-margin, which refers to its effect over the quantity

of goods traded in a given meeting. This analysis cannot be done with an indivisible

goods-indivisible money model. In these models, there exists only an extensive margin and

the agent’s decision is either to trade or not to trade. Therefore, we need to make some

assumptions about the possible values of mL and mH that are different from the ones in

models with divisible goods. These assumptions are to ensure that the issues we want to

address are meaningful in an environment with indivisibility.

First, we are interested in the study of the long-run costs and short-run benefits faced

by a bank who issues more money than agents expect. We capture the long-run costs by

assuming that a choice of mH implies a level of liquidity in the economy inconsistent with

the existence of a monetary equilibrium. In this case, if an agent becomes convinced that

the bank’s choice is mH , he decides not to trade and stays in autarky. Otherwise he keeps

trading until he has the chance of making a decision again. Assumption 2 in the next section

reflects this idea. Second, also as a result of our focus on the banks’ incentive to overissue,

we restrict attention to the region where increases in the amount of money reduce the

agent’s expected payoff. Since we have no intensive-margin, in order to reduce the expected

payoff, we assume that an increment in the amount of money affects the extensive-margin

by reducing the number of trade meetings. That is the content of assumption 1.

2.3 Individual Behavior

We consider first the case of complete information, when the fraction of money in the

economy in a given period is known (equal to m). Let V i
j indicate the value function of

an agent with j units of money right before his ith meeting, with i = 1, ..., n. Note that

V n+1
0 (m) = 0 and V n+1

1 (m) = u given our assumption that the bank has to redeem the
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notes. We have

V i
0 (m) = mV i+1

1 (m) + (1 − m)V i+1
0 (m)

V i
1 (m) = mV i+1

1 (m) + (1 − m)(u + V i+1
0 (m))

i = 1, 2, 3, ..., n.

For example, an agent with money (right before his ith meeting) has a probability m of

meeting another agent with money, in which case he does not obtain any good and moves

to the next meeting with money. With probability (1−m) he meets another agent without

money, in which case he obtains utility u and moves to the next meeting without money. We

can solve this problem recursively and obtain the value functions of an agent right before

his first meeting in the market. We have

V0(m) = (n − 1)m(1 − m)u + mu

V1(m) = (n − 1)m(1 − m)u + u.

Notice that an agent that goes to the market with money has a greater payoff than an agent

with endowment. Hence, when an agent decides to go to the market he always wants to

pass first in the bank in an attempt to exchange goods for money. An agent’s expected

payoff upon going to the market V (m) is equal to mV1(m) +(1 − m)V0(m) 5, or

V (m) = nm(1 − m)u + mu.

We interpret the expected payoff V (m) as follows. The first component (nm(1 − m)u)

indicates the flow payoff an agent expects from the transactions he is going to face in the

market, while the second (mu) indicates the expected gain of the interaction with the bank

after n periods of transactions in the market. This interpretation is important since it

5Notice that we are assuming that agents make their decision of going to the market before knowing if
they are going to receive money from the bank or not.
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separates between the gain coming from the use of money as a medium of exchange in the

market and the gain coming from the redemption of the notes in the bank. Our assumption

that the bank has to redeem the notes is made only for simplicity, and in what follows we

want to make sure that this is not driving any of the results in the paper. We can eliminate

the effect of the redemption over the agent’s expected payoff by simply redefining (abusing

slightly the notation) V (m) as V (m) − mu, that is, V (m) = nm(1 − m)u.

We stated before that the overall gain in autarky in every period is equal to A. We

now establish some microfoundations on how the value of A is obtained, so that the utility

of consuming a good in autarky can be compared to the utility of consuming a good in

the market (u). More specifically, we assume that the opportunity cost of each round of

meetings in the market is equal to a unit of good produced in autarky, with the utility of each

good produced in autarky being equal to a (u > a). This implies that A = na. Without

loss of generality we can normalize V (m) and A as V (m)
n and A

n , respectively. We have

V̂ (m) = m(1−m)u and Â = a. This normalization is useful when we make comparisons of

the expected value for distinct choices of n, and when n → ∞. In particular note that the

difference between the flow payoffs in the market and in autarky is independent of n, the

number of non-bank meetings. Therefore, when we study the effect of changes in n on the

agent’s optimal decision, we are looking to the informational effects only, not to the real

effects that this change has over the flow gains.

In what follows we are interested in the study of a situation where the agent’s expected

payoff of going to the market goes down when the fraction of people with money in the

economy (m) increases. Therefore, we restrict attention to the region of parameters where

∂V̂ (m)
∂m ≤ 0. This leads to the following assumption (Assumption 1)

mH > mL ≥ 1
2
.

Assumption 2 states that the values of mH and mL correspond, respectively, to non-
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existence and existence of monetary equilibrium under full-information. This full infor-

mation scenario constitutes the benchmark of our model. We have

mH [(1 − mH)] <
a

u
≤ mL[(1 − mL)].

We now consider the incomplete information case, where agents do not know the exact

value of m. From now we are going to take n as fixed, unless otherwise stated. The decision

problem of an agent is as follows: in every period t, he has to decide between going to the

market or staying in autarky. 6 Since the only information he accumulates comes from

his private history, each possible private history up to date t represents an information set

upon which he can base his decision. An agent’s strategy is then a sequence S = {st} with

st : Ĥt → {M, A}, where

Ĥt = {ht ∈ {0, 1}(t−1)(M+1) | si
τ (h

τ ) = M , for all τ < t}.

Here M stands for going to the market and A stands for autarky. In the definition of S we

are already taking into account the fact (which is proved below) that when an agent decides

to stay in autarky, his optimal decision is to stay in autarky forever.

The agents’ problem is an example of a two-armed bandit (see Rothschild (1974)). Our

model considers a particular case where one of the arms (autarky) is deterministic and the

other (market) is stochastic. In this situation, if autarky is an optimal choice at a point in

time, it is also optimal in all subsequent periods, i.e., autarky is an absorbing state. The

reason is the following. Consider an agent who stays in the market for (t−1) periods, facing

a history ht. In the beginning of period t, he has to decide between staying in autarky or

going to the market one more period. If he chooses autarky he receives a flow payoff of a,

but he does not receive any additional information with respect to the bank’s type. Hence, if

6When an agent is in the market, he also has to make trade decisions. However, since it is a dominant
action to always accept money from the bank and always accept money in the market, we are not going to
formally include these decisions as part of the agent’s problem.
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the agent’s posterior at t is such that the optimal choice is autarky, this belief is unchanged

in period t + 1, and the agent chooses autarky again. We now turn to the problem of when

an agent decides for the first time to go to autarky.

At any point in time, the decision of an agent to move to autarky depends only on his

posterior, which indicates the probability that the bank is of type H, given the amount of

information accumulated up to that point. Denote a generic posterior by θ. Given θ, agent

i computes his flow payoff V̂ E(θ) = θV̂ (mH) + (1 − θ)V̂ (mL) and the distribution of next

period’s posteriors, θ(1)(θ). The elements in the support of this distribution are given by:

θ(1)(c | θ) =
mc

H(1 − mH)(n+1)−cθ

mc
H(1 − mH)(n+1)−cθ + mc

L(1 − mL)(n+1)−c(1 − θ)

where c is the cardinality of the history in period t, c = 0, ...., n + 1. The probability of

θ(1)(c | θ) is equal to the probability of a high type bank times the probability of histories

with cardinality c under this regime plus the probability of a low type bank times the

probability of histories with cardinality c in this other regime. We have

Pr(θ(1)(c | θ)) = θ Pr
H

(N = c) + (1 − θ) Pr
L

(N = c) (2.1)

where

Pr
H

(N = c) =
(

n + 1
c

)
mc

H(1 − mH)(n+1)−c,

Pr
L

(N = c) =
(

n + 1
c

)
mc

L(1 − mL)(n+1)−c.

We can write the agent’s value function as

υ(θ) = max
{

a

1 − β
, V̂ E(θ) + βEυ(θ(1)(θ))

}
.
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If an agent moves to autarky his payoff is a
1−β . If he stays in the market, he receives a flow

payoff of V̂ E(θ) and faces the same decision problem in the next period with the probability

of posteriors given by (2.1). The following proposition can be proved:

Proposition 2.1. υ(θ) has the following properties:

(i) υ(θ) is decreasing and convex in θ;

(ii) υ(0) = V̂ (mL)
1−β , and υ(1) = a

1−β .

Proof. See appendix.

From Assumption 2, V̂ E(θ) is strictly decreasing in θ. Since υ(θ) is decreasing in θ, we

can conclude that V̂ E(θ) + βEυ(θ(1)(θ)) is strictly decreasing in θ. Moreover,

V̂ E(0) + βEυ(θ(1)(0)) =
V̂ (mL)
1 − β

>
a

1 − β

and

V̂ E(1) + βEυ(θ(1)(1)) = V̂ (mH) +
βa

1 − β
<

a

1 − β
.

This allow us to conclude that there exists a unique θG ∈ (0, 1) satisfying:

V̂ E(θG) + βEυ(θ(1)(θG)) =
a

1 − β
.

Hence, for every θ such that θ ≤ θG, since V̂ E(θ) + βEυ(θ(1)(θ)) ≥ a
1−β , the agent goes to

the market. Otherwise, he stays in autarky. The agent’s optimal strategy is then given by

S = {st} with

st(ht) = M if θ(ht) ≤ θG

st(ht) = A if θ(ht) > θG.

Behaving optimally implies that after observing a history with a sufficiently high car-

dinality, an agent leaves the market, goes to autarky and stays in autarky forever. An
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implication of the agent’s decision rule is that, even when there is a low type bank in the

economy and the market is objectively better than autarky, an optimizing agent may stay

in the market only a finite number of times and already feel confident and informed enough

to conclude that the market is not good for trade.

Note that an optimal strategy involves not only the comparison between the agent’s

expected flow payoff from entering the market and the flow payoff from staying in autarky,

but also the fact that by entering the market the agent obtains additional information about

the bank’s type. To make this point more clear consider the optimal strategy of a myopic

agent. In this case his decision to enter or not in the economy does not take into account

any gains from experimentation and depends solely on the comparison between the flow

payoffs. He would enter as long as

θ
V̂ (mH)
1 − β

+ (1 − θ)
V̂ (mL)
1 − β

≥ a

1 − β

Let θ be the unique value of θ such that the left hand side of the above expression is equal

to the right hand side. We can show that θG > θ, irrespective of the value of n. Therefore,

even when the flow expected payoff in the market is smaller than in autarky, the benefits

of obtaining additional information through experimentation may induce the agent to stay

in the market.

Proposition 2.2. Let θ be such that V̂ E(θ) = a. Then θG > θ.

Proof. See appendix.

2.4 Aggregate Behavior

We now compute the measure µt(m) of agents staying in the market up to period t, given

m. Rewriting equation (1) we can express the agent’s optimal decision in terms of the
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cardinality of his private history as

st(ht) = M if c(ht) ≤ α(t − 1)(n + 1) + γ

st(ht) = A otherwise,

where

α =
ln

(
1−mL
1−mH

)
ln

(
1−mL
1−mH

.mH
mL

) and γ =
ln

(
θG(1−θ0)
θ0(1−θG)

)
ln

(
1−mL
1−mH

.mH
mL

) .

An agent stays in the market until period t as long as he faces a history ht such that

c(hτ ) ≤ α(τ − 1)(n + 1) + γ for all τ ≤ t. From now on we assume that θ0 < θG, so that all

agents enter in the economy in the first period.

First note, from the assumptions in our model, that meetings are independent across

periods and inside each period they follow a binomial distribution with parameter m ∈

{mL, mH}. Consider an agent that enters in the market in period 1. The probability that

in the beginning of period 2 he enters in the market again is given by the probability that

he faces histories with cardinality less than or equal to α(n + 1) + γ. This is given by

∑
c1≤�α(n+1)+γ�

(
n + 1

c1

)
mc1(1 − m)(n+1)−c1

and is equal to µ2(m). Now, consider an agent that enters in the market in period 2. The

probability that he enters in the market in period 3 is equal to the probability that he faces

a history with cardinality less than or equal to 2α(n + 1) + γ, given that his history up to

period 2 has cardinality equal to c1 with c1 ≤ α(n + 1) + γ. This conditional probability is

given by ∑
c2≤�2α(n+1)+γ�−c1

(
n + 1

c2

)
mc2(1 − m)(n+1)−c2 .

We can obtain µ(3) by multiplying the above conditional probability by the probability

that an agent faces a history of cardinality c1 in his first period, and summing over all
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histories satisfying c1 ≤ α(n + 1) + γ. We have

∑
c2≤�2α(n+1)+γ�−c1

c1≤�α(n+1)+γ�

(
n + 1

c1

)(
n + 1

c2

)
mc1+c2(1 − m)2(n+1)−(c1+c2).

Proceeding in a similar way, we can calculate the measure of agents entering in the economy

for every value of t:

µt(m) =
∑

(c1,...,ct−1)∈Ct−1

(
n + 1

c1

)
...

(
n + 1
ct−1

)
mc1+...+ct−1(1 − m)(t−1)(n+1)−(c1+...+ct−1),

where

Ct−1 = {(c1, ..., ct−1) | cτ ≤ 	α(τ − 1)(n + 1) + γ
 − c1 − ... − cτ−1 for τ = 1, ...t − 1}

The following proposition can be proved:

Proposition 2.3. For all t:

(i) µt+1(mi) ≤ µt(mi), i = L, H.

(ii) µt(mH) − µt+1(mH) ≥ µt(mL) − µt+1(mL). In particular, µt(mL) ≥ µt(mH).

Moreover, for every γ there exists a t such that, for all t > t, the above inequalities are

strict.

Proof. See appendix.

Therefore, independent of the monetary regime, the measure of agents engaged in market

activities decreases over time. In an environment where agents use private histories to

update their beliefs with respect to the bank’s type, there is always a positive probability

that some agents face histories inducing them to believe that there is too much money in

the economy, even under a tight monetary regime where m = mL. However, the measure of

agents leaving the market under a soft monetary regime is larger than the measure under

a tight regime. Agents leave the market only after collecting enough evidence that lead
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them to believe that the regime is actually of a high type. Since these evidences appear

with higher probability in a high type regime, after a while more agents start to leave the

economy in this case.

The results so far reflect the dynamics of our environment. It is also important to

describe the long-run features of the economy under the two regimes. The following propo-

sition deals with these issues.

Proposition 2.4. lim
t→∞µt(mH) = 0 and lim

t→∞µt(mL) = µL > 0.

Proof. See appendix.

Observe that we only need to prove that µt(mH) → 0 as t → ∞. This is so, because from

(ii) of Proposition 2.3 we have that the exit rate of the market in the soft monetary regime

is strictly higher than in the tight monetary regime. Therefore we cannot have µt(mL) → 0.

Another way of seeing that µt(mL) → µL > 0 is given by Banks and Sundaram (1992).

They prove (theorem 5.1) that in any denumerable-armed bandit problem with independent

arms, if at any point in time an arm is selected by an optimal strategy, then there exists

at least one type of this arm with the property that, conditional on the arm’s type being

this particular one, then this arm will remain, with non-zero probability, an optimal choice

forever. However, our hypotheses imply that the ’market’ arm is an optimal choice at the

first period. So the above result must hold. Since we can show that µt(mH) → 0, then in

must be the case that µt(mL) converges to a positive number.

In the long-run, the measure of agents accepting money from the high type bank goes

to zero, while the measure of agents accepting money from the low type bank converges to

a positive number. Therefore, even though it is true that a bank overissuing money can

survive in the economy in the short-run, he gradually dies out over time. However, if a

bank does not overissue, a positive measure of agents is always engaged in trade activities.
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2.5 Bank’s Behavior

The bank obtains utility from seigniorage, described here by the flow of goods it stores over

time. We say that a bank stores a good whenever it exchanges one unit of money for one

unit of good, and keeps the good while the agent stays in the market. For each unit of a

good in storage during a period the bank receives a utility ν. If the bank always give money

to a fraction m of agents entering in the market its utility is equal to

U(m, δ) =
∞∑

t=1

δt−1µt(m)mv

We will assume that the bank’s discount factor δ is private information. It is determined

by a draw from a random variable with cdf F (δ), for δ ∈ [0, 1]. The bank knows exactly

which value of δ was chosen but agents in the economy only know the distribution F (δ).

Every agent uses F (δ) to form a prior θ0 with respect to the bank’s behavior.

Propositions 2.3 and 2.4 describe how µt(m) evolves over time for m = mL and m = mH .

The next result shows how the bank’s decision is affected by these dynamics. We obtain

that, while patient banks choose a tight monetary regime, impatient banks choose a soft

regime.

Proposition 2.5. There exists a unique δ ∈ (0, 1) such that U(mL, δ) = U(mH , δ). More-

over, if δ > δ then U(mL, δ) > U(mH , δ) and if δ < δ, U(mL, δ) < U(mH , δ).

Proof. See appendix.

In what follows we construct an equilibrium where the bank’s behavior is described by

proposition 2.5 and the agent’s behavior corresponds to the optimal decision rule obtained

in Section 2.3. First we describe our environment in terms of a Bayesian game. A Bayesian

game consists of a list {(I, A,Θ, u), ξ} where I is the set of players, A is the set of actions,

Θ is a set indicating the possible types that each player can have, u are the payoffs, and
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ξ is a probability distribution over Θ. In our model, the players are the bank and a [0, 1]

continuum of agents. The action for the bank is either mL or mH , while for each agent it is

either to stay in autarky (A) or go to the market (M). The set of types for the bank is the

interval [0, 1], the set of possible discount factors. Agents are ex-ante homogeneous, hence

they have only one type, described by their initial prior θ0. The probability distribution

over the types is given by the cdf F (δ) and by the prior θ0. The payoff of the bank is given

by
∞∑

t=1
δt−1µt(m)mv and the payoff of the agents is given by υ(θ), for each agent

Proposition 2.6. Let θ0 = F (δ) < θG, and consider the strategy profile ∆ = (S∗, m∗),

where S∗ = {s∗t }∞t=1, with s∗t : Ĥt → {M, A} given by

st(ht) = M if θ(ht) ≤ θG

st(ht) = A if θ(ht) > θG.

and m∗(δ) : [0, 1] → {mL, mH} is such that

m(δ) = mL if δ ≥ δ

m(δ) = mH otherwise.

Then ∆ is a Bayesian Nash Equilibrium.

Proof. From Proposition 2.5 we know that each type of bank is maximizing utility given

the agents’ behavior. Moreover, agents update their beliefs with respect to the bank’s type

from Bayes rule and, given these beliefs, they maximize utility at any point in time.

This proposition describes one possible equilibrium in our model. If θ0 = 1, there is

another equilibrium where agents never accept money (the bank’s choice of m is irrelevant

in this case). However, our assumption that θ0 < θG rules it out. Nevertheless, we can

have many degenerate equilibria where money does not circulate for some or all periods of
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time. This can happen if an agent believes that nobody is going to the market in a given

period or if he believes that everybody who is going to the market is not going to accept

money. For example, all agents can decide that they are not going to enter in the market

at t=1 (for any of the above reasons), or they can decide to wait for a number of periods

before entering. Another type of coordination equilibria is one where the agents agree to

stay in the market up to a certain period T (they may decide to leave earlier, if they get

pessimistic enough). This is possible since the bank must make an once and for all decision

about the level of m at t = 1. If T is big, then a sufficiently patient bank will have the

incentive to choose m = mL, even knowing that after a finite number of periods all agents

leave the economy no matter their beliefs.

However, we believe that the equilibrium described in proposition 2.6 is more appealing

than other equilibria. The reason for this lies in our assumption that the agent’s expected

payoff does not depend on the size of the market, only on the ratio of buyers and sellers.

Hence, whenever a group of agents (no matter how small, but of positive measure) decide

to go to the market and accept money—their beliefs must, of course, be smaller than an

appropriate threshold belief θG—all other agents with a posterior smaller than or equal to

θG will also find profitable to enter the market. So, whenever the agents and the bank

believe that a positive measure of agents is going to the market in every period, proposition

2.6 describes their behavior.

Proposition 2.6 describes how a utility maximizing bank acts in an environment where

agents can only form beliefs from their private histories. A crucial aspect is that the bank

has a degree of freedom to choose m which does not exist when there is full information.

If agents know with certainty which bank is acting in the economy, the only equilibrium

involving monetary trade has m = mL. However, with partial information, the bank can

overissue money and still operate in the economy over time.
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Economic History provides various examples on how monetary regimes are subjected

to instability associated with the bank’s temptation to overissue. One of them is Tullock’s

(1957) description of the development of paper money in China:

“All of the governments in China between 1100 and 1500 succumbed to this temptation

(overissue), and their monetary histories have a strong family resemblance. In each there

was a period of inflation, usually quite a long one. Except in the case of the Southern Sung

dynasty, which was conquered by the Mongols before the evolution was completed, the use

of paper money was, in each case, eventually abandoned. This abandonment of the use

of paper money in China is the most interesting feature of the history of paper money in

China...” (pages 395 and 396)

However, the fact that incomplete information can bring instability does not necessarily

implies that every economy where agents face uncertainty is necessarily unstable. As long as

the agent in charge of printing money is patient trade will be supported over time. Ritter

(1995), for example, suggests that the government is the only agent sufficiently patient7

to make the transition from a barter economy to a fiat money economy possible. Private

agents are either too small or too impatient to resist the temptation to overissue, which

leads to the breakdown of a monetary system based on private money.

The idea that governments are more able than private agents to resist the temptation

of overissue can also be seen in the American Legislation regarding money issue. According

to Timberlake (1987), “...since the abolition of the operational Gold Standard in the early

1930s, the federal government through its agency, the Federal Reserve System, has been

almost the sole creator of the monetary base....No money of any significant amount can be

created today without some sanction or act of the Federal Reserve System.” Timberlake

7Ritter also assumes that the government must be sufficiently large in order for the transition from barter
to fiat money to be possible.
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continues: “This condition has encouraged the notion that government is a necessary, or at

least desirable, regulator of any monetary system - that without government involvement

any monetary system quickly degenerates into chaos” (pages 437 and 438).

We believe that considerations about who (if any) is the most suited agent to print

fiat money cannot be addressed without a further reference to the environment where such

decisions are made. It may be true that governments care more about the welfare of future

generations and hence are more patient. However, governments have been part of our

society since ancient times and, as Ritter (1995) points out, the widespread use of purely

fiat money is a 20th century development. What our model suggests is that there is another

element which is crucial for a better understanding of the development and consolidation

of monetary regimes, namely, the society’s ability to monitor the bank’s behavior.

In what follows we show that if the number of non-bank meetings (n) within periods is

large, the incentives to overissue decrease. When an agent has more meetings, he obtains

more information with respect to the state of the economy. Hence, in general, agents

form more precise beliefs about the bank’s behavior. In other words, under a soft monetary

regime, the average value of θ(ht) increases and, under a tight monetary regime, it decreases.

We are going to show that, for a given discount factor, the difference U(mL, δ)−U(mH , δ)

increases as n increases, which gives more incentives for a bank to choose mL. In particular,

a bank who was indifferent between mL and mH , for a given value of n, prefers to choose

mL if n becomes sufficiently large.

Up to this point we have taken n to be fixed, but from now on we need to consider

the case where n is allowed to assume any value in N, the set of natural numbers. This

brings in additional complications to our environment since now the value function should

depend in both θ and n. Being n a discrete variable, it is better if we instead view the

agent’s value function as an infinite sequence {υn} of value functions depending on θ alone.
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From the results in proposition 2.1 we know that, for all n ∈ N , υn is a decreasing function

of θ with υn(0) = V̂ (mL)
1−β and υn(1) = a

1−β . Another consequence of letting n vary is that

the threshold belief θG also depends on n. This leads to the issue of how θG behaves as n

increases, in particular, what happens when n goes to infinity. One feature we would expect

to happen is that θG is bounded away from one when n goes to infinity. In what follows we

show that this is indeed the case. Before giving a formal statement of this fact, let us argue

informally why it must be true.

Consider the hypothetical case where n = ∞. If an agent has prior θ and decides to

enter the economy, his flow payoff does not depend on n and is equal to

V̂ E(θ) = [θmH(1 − mH) + (1 − θ)mL(1 − mL)]u.

Moreover, he is going to learn the type of the bank he is dealing with. Given that his prior

is θ, with probability θ he learns that the bank is of the high type and with probability

1− θ he learns that the bank is of the low type. Therefore, his overall payoff from entering

the economy is

V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ (mL)
1 − β

]
,

from which we can conclude that the agent’s value function in this case is

W (θ) = max

{
a

1 − β
, V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ (mL)
1 − β

]}
.

Now let θ̃ be such that υn(θ̃) = a
1−β . Since V̂ E(1) < a it is easy to see that θ̃ must be smaller

than 1. But θ̃ is just the equivalent of θG when n = ∞. So it is natural to expect that

θG(n) will not converge to 1 when n → ∞, since we expect the agent’s problem to become

increasingly similar to the n = ∞ problem. The following results justify this intuition.

Proposition 2.7. {υn} is a non-decreasing sequence that converges uniformly to W (θ)

where

W (θ) = max

{
a

1 − β
, V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ (mL)
1 − β

]}
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Proof. See appendix.

Corollary 2.1. ∃ρ < 1 such that θG(n) ≤ ρ for all n.

Proof. See appendix.

We are now in conditions to describe how changes in the value of n affects the bank’s

incentives to choose a monetary regime. We obtain that, unless for very impatient banks,

if the number of meetings in every period is sufficiently large the bank is always going to

choose a tight regime and is not going to overissue.

Proposition 2.8. For every δ > mH−mL
mH

, there exists n(δ) such that, for all n ≥ n(δ),

U(mL, δ, n) > U(mH , δ, n).

Proof. See appendix.

The lower bound in this proposition is due to our assumption that all agents enter in

the economy in the first period. Therefore, a very impatient bank prefers to choose mH if

mH > mL
1−δ , i.e., δ > mH−mL

mH
.

2.6 Building and Maintaining a Reputation

We now relax the assumption that the bank can only make an once and for all decision

about the value of m and ask whether there is an equilibrium where a sufficiently patient

bank chooses mL in every period and a sufficiently impatient bank chooses mH in every

period. It turns out that the existence of such an equilibrium depends not only on the

patient bank’s concern in building a good reputation, but it also depends on its concern in

maintaining this good reputation over time. The discussion in this section is similar to the
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analysis in Mailath and Samuelson (1998), starting with the interpretation of reputation as

the agent’s posterior about the bank behavior.

First, it is important to make clear the difference between building a good reputation

and maintaining it over time. In the previous section, we only captured the incentives to

build a good reputation. Since patient banks care about the long-run acceptability of its

money, the best choice is to set m = mL, so that the bank has an improving reputation in

the society. The bank can only make an once and for all decision, hence there is no sense

in which we can talk about incentives to maintain a good reputation over time. This does

not happen when we allow the bank to change its decision in every period. In this new

set up, as times goes on, since agents are continually revising their beliefs about the bank’s

type, the bank is facing a different distribution of its reputation in every period, and this

affects its future behavior. It is reasonable to expect that a very patient bank chooses mL

for a large number of periods not only to improve its reputation, but also to maintain a

good reputation once it is acquired. However, when the number of periods becomes large,

if a bank always chooses m = mL, the distribution of the agents’ posteriors about its type

converges in probability to 0. This implies that, after a sufficiently long period of time,

agents that stay in the market become virtually convinced that the bank never overissues.

Moreover, further experience in the market practically does not affect their beliefs. Even

after facing further histories with high cardinality, an agent remains basically convinced

that the bank is choosing mL. At this point the bank did such a good job in the past in

building its reputation that now there is no more need to care about it. As a consequence,

the equilibrium where a patient bank always chooses mL collapses.

The above reasoning leads to the conclusion that in order to have an equilibrium with

no overissue we cannot reach a point where the bank’s decision exerts no significant effect

over the distribution of its reputation. In what follows we are going to slightly modify the
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environment in order to address this issue.

Up to this point we have treated the bank as a black box. The only relevant variable was

its discount factor δ. We now add structure to the bank by assuming that its ownership can

change and the bank’s discount rate is given by that of its current owner. More specifically,

there is a probability λ that the owner is replaced in every period. The new owner discount

factor is determined by a draw from the discount factor’s pool and the agents’ common

prior about the new owner is φ ∈ [0, 1], with φ not necessarily equal to θ0. Moreover, this

change of ownership is not observed by the agents in the economy. In this new setup agents’

beliefs never reach a point where the bank’s actions have a negligible influence on its future

reputation. After observing a very negative history an agent attributes some probability to

the event that the bank has changed its preferences. This gives a patient bank the right

incentives to not overissue.

A strategy for the bank is now a sequence ∆ = {mt} of contingent plans where mt ∈

{f : [0, 1] × {mL, mH}t−1 −→ {mL, mH}}. At period t, the bank’s action depends on its

type and on all of its previous actions. Implicit in this description is the assumption that

changes of ownership do not erase the bank’s memory. Since we are mainly interested in

establishing that the bank’s behavior described in section 2.5 is dynamically consistent, we

restrict attention only to strategies where patient banks always choose mL and impatient

banks always choose mH , irrespective of its past history. Formally, the class of strategies

that we are going to consider is M = {mt} with mt : [0, 1] × {mL, mH}t−1 −→ {mL, mH}

given by (for some δ̃)

mt(δ, .) =

{
mL if δ ≥ δ̃

mH if δ < δ̃
(2.2)

As before, a bank is of the low type if its discount factor is in [δ̃, 1], otherwise it is of the

high type.
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Our first objective is to determine the agents’ optimal response to this particular strat-

egy. For this we need to describe how agents update beliefs when the bank’s strategy is

given by (2.2). Let ht−1 indicate the history during period t−1 and let θ(ht−1) be the prior

probability that the bank is impatient (in which case it chooses mH), given the history ht−1.

We have:

θ(ht) = (1 − λ)
m

c(ht)
H (1 − mH)(n+1)−c(ht)θ(ht−1)

m
c(ht)
H (1 − mH)(n+1)−c(ht)θ(ht−1) + m

c(ht)
L (1 − mL)(n+1)−c(ht)(1 − θ(ht−1))

+λφ (2.3)

Observe that at all points in time posteriors are restricted to the interval [λφ,1−λ+λφ].

The agent’s decision problem now involves 3 variables, the belief θ, the probability of

replacement λ and the common prior about a new owner φ. His value function, taking the

number of per-period meetings fixed at some n, is given by

υn(θ, λ, φ) = max
{

a + βυn((1 − λ)θ + λφ, λ, φ), V̂ E
n (θ) + βEυn(θ(1)(θ, λ, φ), λ, φ)

}
,

where θ(1)(θ, λ, φ) is, as before, the distribution of the next period’s beliefs (given θ, λ, φ

and n). Unlike the previous environment, autarky need not be absorbing. At any period

in time, an agent with belief θ has to decide between going to the market or staying in

autarky. If he stays in autarky, his next period’s belief will be (1− λ)θ + λφ, which can be

either greater or smaller than θ. Hence we cannot assume, from the start, that autarky is

an absorbing state. We obtain, however, that for φ sufficiently close to 1, this will be the

case. First, we prove the following result

Proposition 2.9. For all n ∈ N , υn(θ, λ, φ) is a decreasing function of θ.
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Proof. See appendix.

We now show that, for φ = 1, there exists a unique θ which makes agents indifferent

between autarky and market. First, note that if θ
′ ∈ [0, 1] has this property, we have

υ(θ
′
, λ, 1) = a + βυ((1 − λ)θ

′
+ λ, λ, 1).

Since (1 − λ)θ
′
+ λ ≥ θ

′
, and because υn(θ, λ, φ) is decreasing in θ

υ(θ
′
, λ, 1) ≤ a + βυ(θ

′
, λ, 1) ⇒ υ(θ

′
, λ, 1) ≤ a

1 − β
.

However, we must have υ(θ, λ, φ) ≥ a
1−β for all choices of θ, λ and φ. Hence υ(θ

′
, λ, 1) = a

1−β .

Now, take any θ
′′

> θ
′

and suppose that the agent is indifferent between the market and

autarky if his belief is θ = θ
′′
. We must have

V̂ E(θ
′′
) + βEυ(θ(1)(θ

′′
, λ, 1), λ, 1) = a + βυ((1 − λ)θ

′′
+ λ, λ, 1) = υ(θ

′′
, λ, 1) =

a

1 − β

Therefore, since V̂ E is strictly decreasing and (see the proof of proposition (2.9))

Eυ(θ(1)(θ, λ, φ), λ, φ) is decreasing in θ,

a

1 − β
= V̂ E(θ

′′
) + βEυ(θ(1)(θ

′′
, λ, 1), λ, 1) < V̂ E(θ

′
)

+βEυ(θ(1)(θ
′
, λ, 1), λ, 1) =

a

1 − β
,

a contradiction. Similarly, we can show that for θ
′′

< θ
′
we cannot have the agent indifferent.

So, when φ = 1 the equation

a + βυ((1 − λ)θ + λ, λ, φ) = V̂ E(θ) + βEυ(θ(1)(θ, λ, φ), λ, φ) (2.4)
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has at most one solution. However, when θ ∈ {0, 1},

υ((1 − λ)θ + λ, λ, φ) = Eυ(θ(1)(θ, λ, φ), λ, φ),

irrespective of the values of λ and φ. So, since a > V̂ E(1) and a < V̂ E(0), we can conclude

that (2.4) has a unique solution in (0, 1), which we denote by θG(λ, 1). Reducing λ if

necessary, this unique solution can be made to lie in the interval [λθ0, 1) (just remember,

from proposition (2.9), that υ(θ, λ, φ) is continuous), which is the relevant interval when

φ = 1.

Therefore, at least when φ = 1, the agent’s optimal decision is the same as in the

previous sections: go the market if and only if his belief θ about the bank is smaller than

or equal to a certain threshold belief θG(λ, 1). Moreover, since once in autarky the agent’s

next period belief about the bank only gets more pessimistic, we have that autarky is an

absorbing state.

Now suppose that φ < 1. Denote by θG(λ, φ) a posterior that makes the agent indifferent

between market and autarky. By continuity we know that θG(λ, φ) converges to θG(λ, 1)

as φ goes to 1.8 Since θG(θ, 1) < 1, it must be the case that there exists a φ < 1 with

the property that if φ ≥ φ, then θG(λ, φ) ≤ φ. Therefore, if we restrict φ to the interval

[φ, 1), we have that (1 − λ)θG(λ, φ) + λφ ≥ θG(λ, φ). We can then replicate the argument

used to prove that (2.4) has a unique solution when φ = 1, to conclude that indeed it has

8Let {φn}, with φn ∈ [0, 1], be such that φn → 1 and suppose, by contradiction, that {θG(λ, φn)} does

not converge to θG(λ, 1). This means that there is an ε > 0 such that for all n ∈ N there exists an n
′ ≥ n

with the property that |θG(λ, φn
′ )−θG(λ, 1)| > ε. So we can construct a subsequence {θG(λ, φnk )} such that

for all k ∈ N , |θG(λ, φnk ) − θG(λ, 1)| > ε . Since {θG(λ, φnk )} is bounded, it has a converging subsequence,
and this subsequence cannot converge to θG(λ, 1). Without loss of generality we can take this subsequence
as the original one. Denote by α its limit. However, we know that

a + υ((1 − λ)θG(λ, φn) + λ, λ, φn) = V̂ E(θG(λ, φn)) + βEυ(θ(1)(θG(λ, φn), λ, φn), λ, φn),

and so, by the continuity of υ, we must have

a + υ((1 − λ)α + λ, λ, 1) = V̂ E(α) + βEυ(θ(1)(α, λ, 1), λ, 1),

a contradiction.
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a unique solution as long as we consider φ ≥ φ. Moreover, autarky is absorbing, and the

reason is exactly the same as when φ = 1. One final remark is that, once more because υ

is continuous, if we take λ to be sufficiently small, θG(λ, φ) > θ0, the initial common prior

in this economy. So, we are sure that this perturbed environment is meaningful for small

values of the perturbation parameter. From now on, we are going to assume that φ ≥ φ.

Therefore, we can write down the agent’s optimal strategy as S∗ = {s∗t } with

s∗t (h
t) = M if θ(ht) ≤ θG(λ, φ), and

s∗t (h
t) = A if θ(ht) > θG(λ, φ) (2.5)

for all t and ht ∈ Ĥt.

Let θt−1 denote the agent’s prior at the beginning of period t− 1. Simple algebra shows

that if an agent had a prior θt−1 ≤ θG(λ, φ) and faced a history ht−1 during period t − 1,

he enters in the economy in period t if and only if c(ht−1) ≤ α(n + 1) + γ(θt−1), where α is

the same as before and9

γ =
ln

(
θ̃G(λ,φ)(1−θt−1)

θt−1(1−θ̃G(λ,φ))

)
ln

(
1−mL
1−mH

.mH
mL

) with θ̃G(λ, φ) =
θG(λ, φ) − λθ0

1 − λ
.

The discussion above shows that, if agents believe that patient banks always choose mL

and impatient banks always choose mH , their best behavior is to follow a cut-off rule with

the cut-off value given by θG(λ, φ). We now check if the bank’s optimal choice is indeed

consistent with the agent’s beliefs. First we consider the patient bank’s case. For this, let

νt(θ, m) be the probability that if an agent enters the market with a belief θ, and the bank

chooses m ∈ {mL, mH} in the present period and mL thereafter, this agent will enter in the

economy t periods in the future. The following is true

9Note that θ0 < θG(λ, φ) hence θ̃G(λ, φ) is well-defined.
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Lemma 2.1.

(i) νt(θ, mL) ≥ νt(θ, mH), for all θ ∈ (0, 1) and for all t ≥ 1.

(ii) ν1(θ, mL) − ν1(θ, mH) increases with θ in [0, θG(λ, φ)].

Proof. See appendix.

If the low type bank faces an agent with prior θ and does a one-shot deviation, the

probability that this agent will enter in the market in the future decreases. The net gain

from a deviation depends upon θ. In particular, when θ diminishes, the bank’s incentive to

deviate becomes stronger. If an agent is really confident that the bank is of a low type, the

probability that he enters the market in the future, even after experiencing bad histories,

is high. In the extreme case where θ = 0 and either λ or φ is equal to 0, the agent always

enter the market, that is, νt(θ, mL) = νt(θ, mH) = 1 for all t. In this situation, the bank’s

choice has no effect over the agent’s posteriors, and the bank’s dominant action is mH in

every period. This case does not happen in our environment since λ and φ are positive

and θ is bounded below by λφ, so that the bank always has a trade-off between present

and future gains when faced with the choice of m. Therefore, we expect that a sufficiently

patient bank prefers to choose mL in order to increase its future gains. This result is proved

in the proposition below. Proposition 2.10 also considers the incentives of the impatient

bank to choose mH . This bank has to compare the present loss incurred by a deviation

with the future gains coming from an increase in reputation. It is straightforward to show

that an impatient bank never have incentives to choose mL if we take δ to be sufficiently

small.

Proposition 2.10. Let ∆′ = (M∗, S∗) be the strategy profile where S∗ is the agent’s strategy
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defined in (2.5) and M∗ is the bank’s strategy defined as (for δ1 ≤ δ2)

mt : [0, δ1] ∪ [δ2, 1] × {mL, mH}t−1 −→ {mL, mH} such that

mt(δ, .) =
{

mL if δ ≥ δ2

mH if δ ≤ δ1

There exists n1 ∈ N such that this strategy profile, along with the Bayesian updating rule

given by (2.3), constitutes a sequential equilibrium if the number n of non-bank meetings

per period is greater or equal than n1.

Proof. The only thing we have to prove is that given an appropriate choice of δ1 and δ2, the

bank will have no incentives to deviate after any history of its play. Let us first deal with

the patient bank. We are going to do so by looking at the bank’s incentives to do one-shot

deviations after any possible histories of its play. Given any such history, we can group the

agents in the economy according to their present beliefs. Then, within each of these groups

we can determine whether a one-shot deviation pays for the bank. Take the case where

θ = λθ0. Agents with this belief are the most optimistic about the bank. According to (i)

of lemma (2.1), a one-shot deviation involves a trade-off for the bank: A present gain of

mH − mL (normalized by the size of the group of agents with this belief θ), and a loss of

payoff in all future periods (due to a decrease in its reputation). This loss is bounded below

by δ[ν1(θ, mL)− ν1(θ, mH)]. We want to show that with a convenient choice of n and δ we

can make this lower bound bigger than mH − mL. From the proof of proposition (2.8) we

have that limn ν1(θ, mL) = 1 and limn ν1(θ, mH) = 0 for all θ ∈ (0, θG(λ)]. Let then ε be

any (small) positive number such that

δ2 =
mH − mL

mL − ε(mL + mH)
< 1.

We know that such an ε exists since mH − mL < 1/2 and mL ≥ 1/2. We also know that

∃n1 ∈ N such that if n ≥ n1, then ν1(θ, mL) > 1 − ε and ν1(θ, mH) < ε. So, if n ≥ n1 we
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have that

δ[ν1(θ, mL) − ν1(θ, mH)] ≥ δ(mL − ε(mL + mH)) ≥ mH − mL

whenever δ ≥ δ2. Hence, even when facing the most optimistic agents that are possible, a

one-shot deviation doesn’t pay for the bank if n ≥ n1 and δ ≥ δ2. Now consider the case

where θ > λθ0. According to (ii) of lemma (2.1), we know that the bank’s loss in the period

following its one-shot deviation will be at least as high as in the case where θ = λθ0. So,

a one-shot deviation will never pay for the bank as long as n ≥ n1 and δ ≥ δ2. The case

of the impatient bank is simpler. Let ηt(θ, m) be the probability that if an agent enters

the market with a belief θ, and the bank chooses m ∈ {mL, mH} in the present period

and mH thereafter, he enters in the economy t periods in the future. From the proof of

(i) of lemma (2.1) we can see that ηt(θ, mL) ≥ ηt(θ, mH) for all t and all relevant θ. We

can interpret this in a way similar to the way we did in the previous paragraph. At any

period, the impatient bank has to consider the tradeoffs involved in a one-shot deviation.

But unlike the previous case, the tradeoff is between a loss in the present period and a gain

in all subsequent periods due to an increase in the bank’s reputation. However, since the

bank is impatient, it’s discount factor is δ ≤ δ1, we can always make the future gains as

small as we want by simply making δ1 sufficiently close to zero. Therefore, ∃δ1 such that a

one-shot deviation will never pay for an impatient bank. This proves our proposition.

2.7 Conclusion

This chapter constitutes an effort to address in a formal way the determinants of monetary

stability in an economy where information about the value of money is decentralized. In

particular, we considered the bank’s incentive to follow a tight monetary regime in an
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environment where agents only learn about the amount of money in circulation from their

personal experiences in the market. We obtained that the bank’s temptation to overissue is

limited in two different ways. First, it depends on the bank’s commitment in maintaining the

long-run value of money, which in turn depends on the bank’s patience. Second, it depends

on the society’s ability to monitor the bank’s behavior, as measured by the number of

transactions an agent faces in a given period.

In an economy where agents face few transactions, the presence of external controls over

the amount of money is crucial. However, in economies where there is a rapid transmission

of information about the state of the economy, the government intervention is less necessary.

In this case, the society itself is able to monitor the behavior of the bank.

Society’s ability to obtain information changes over time. In modern economies, informa-

tion about decisions made by the bank is much more accessible than in the past. Therefore

we believe that it is necessary to make a reevaluation of the adequacy of imposing stringent

controls over the creation of fiat-money. It may be true that government intervention was

necessary in the past, in order to regulate money creation in a poorly informed economy.

However, such intervention may not be necessary in modern economies.

Finally, we discussed under what conditions a patient bank is willing to follow the

same policy and not overissue even if it is free to change m over time. Not surprisingly,

we obtained that in the initial periods the bank’s concern in building a good reputation

guarantees that it will not overissue. As time goes on and a good reputation is achieved, the

incentives for a patient bank to choose mL are driven by the necessity of maintaining this

good reputation. The interesting result is that in the case where the bank’s type is known

with certainty, the bank does such a good job in building and maintaining a reputation that

after some point in time agents basically ignore their private histories and take for granted

that the bank will never overissue. This eventually causes the bank to start overissuing.
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However, as long as agents face a small probability that the bank’s type may change and

this change may not be observed, a sufficiently patient bank always chooses mL in order to

maintain a good reputation and separate itself from the impatient banks.

2.8 Appendix

Proposition 2.1 υ(θ) has the following properties:

(i) υ(θ) is decreasing and convex in θ;

(ii) υ(0) = V̂ (mL)
1−β , and υ(1) = a

1−β .

Proof. We first prove (ii). If θ = 0 then θ(1)(θ) is the degenerate distribution putting

weight one in θ = 0. Hence

υ(0) = max
{

a

1 − β
, V̂ E(0) + βυ(0)

}
.

Moreover, since V̂ E(0) = V̂ (mL) > a, we can conclude that υ(0) = V̂ (mL)
1−β . If θ = 1, then

θ(1)(θ) is again degenerate, but now it puts all the weight in θ = 1. However, V̂ E(1) =

V̂ (mH) < a, and so we have that υ(1) = a
1−β . Here we are implicitly assuming that υ(θ) is

well-defined, a fact that is established in the proof of (i).

(i) Let T : C[0, 1] → C[0, 1] be the mapping given by:

Tf(θ) = max
{

a

1 − β
, V̂ E(θ) + βEf(θ(1)(θ))

}
where C[0, 1] = {f : [0, 1] → R | f ∈ C0}. It is easy to see that Tf is indeed continuous

because θ(1)(θ) is a discrete probability distribution and the Bayesian updating rule is

continuous on the prior. Observe now that if f, g ∈ C[0, 1], with f ≤ g, then Ef(θ(1)(θ)) ≤

Eg(θ(1)(θ)), and so Tf ≤ Tg. Therefore, T is monotonic. Also, since

max
{

a

1 − β
, V̂ E(θ) + βE(f + c)(θ(1)(θ))

}
≤ max

{
a

1 − β
, V̂ E(θ) + βEf(θ(1)(θ))

}
+ βc,
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we have that T (f + c)(θ) ≤ Tf(θ)+βc for any θ ∈ [0, 1] and any f ∈ C[0, 1]. Therefore, the

Blackwell conditions are satisfied and T is a contraction. This means that it has a unique

fixed point in C[0, 1], which is exactly υ(θ).

If we show that θ < θ′ implies that θ(1)(θ′) first order stochastically dominates θ(1)(θ),

we then have that if f is decreasing in θ, Ef(θ(1)(θ)) is also decreasing in θ. To see this,

remember that

θ(1)(c | θ) =
mc

H(1 − mH)(n+1)−cθ

mc
H(1 − mH)(n+1)−cθ + mc

L(1 − mL)(n+1)−c(1 − θ)
.

Then, for all x ∈ [0, 1],

Pr(θ(1)(θ) ≤ x) = Pr(Sn+1(θ) ≤ φ(x, θ)),

where Sn+1(θ) is a random variable indicating the number of successes in n + 1 trials and

φ(x, θ) = max{c ∈ {0, ...n + 1} | θ(1)(c | θ) ≤ x}.

Note that Pr(Sn+1(θ) = c) = Pr(θ(1)(c | θ)) as given by (2). Since θ(1)(c | θ) is strictly

increasing both in θ and c, φ(x, θ) is decreasing in θ. Therefore, for θ < θ′,

Pr(Sn+1(θ′) ≤ φ(x, θ′)) ≤ Pr(Sn+1(θ) ≤ φ(x, θ′)) ≤ Pr(Sn+1(θ) ≤ φ(x, θ))

where the first inequality comes from θ < θ′ and Pr
H

(N ≤ c) < Pr
L

(N ≤ c). Hence, for all

x ∈ [0, 1]:

Pr(θ(1)(θ′) ≤ x) ≤ Pr(θ(1)(θ) ≤ x),

which is the desired stochastic dominance result. Since V̂ E(θ) is also decreasing in θ ,

the map T takes decreasing functions into decreasing functions. Because {f ∈ C[0, 1] |

f is decreasing} is a closed subset of C[0, 1], we can conclude that the unique fixed point of

T , υ(θ), must be decreasing in θ.
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We still have to establish the convexity of υ. However, {f ∈ C[0, 1] | f is convex} is

also a closed subset of C[0, 1]. Since the intersection of 2 closed sets is also closed, the only

thing left to do is to show that the map T defined above takes convex functions into convex

functions. The proof of this fact is included in the proof of (i) of Lemma 3.1 in Banks and

Sundaran (1992), and so we are not including it here. See also footnote 2 in their paper for

this respect.

Proposition 2.2 Let θ be such that V̂ E(θ) = a. Then θG > θ.

Proof. Let f(θ) be given by

f(θ) =
V̂ E(θ)
1 − β

.

Then

Ef(θ(1)(θ)) =
V̂ E(θ)
1 − β

,

since E(θ(1)(θ)) = θ (because the agents are doing Bayesian updating) and V̂ E(θ)
1−β is a linear

function of θ. Therefore we must have:

Tf(θ) = max
{

a

1 − β
, V̂ E(θ) + βEf(θ(1)(θ))

}
= max

{
a

1 − β
,
V̂ E(θ)
1 − β

}
≥ f(θ),

where T is the map considered in Proposition 2.1. Since T is monotone, Tn−1f(θ) ≤ Tnf(θ),

for all n ∈ N , and for all θ ∈ [0, 1]. Consequently, f(θ) ≤ lim
n→∞Tnf(θ). However, T is a

contraction and so Tnf converges uniformly (in the sup norm) to υ, it’s unique fixed point.

But uniform convergence implies pointwise convergence, and so f(θ) ≤ υ(θ) for all θ ∈ [0, 1].

From the definition of θG, and from the fact that f ≤ υ, we know that:

a

1 − β
= V̂ E(θG) + βEυ(θ(1)(θG)) ≥ V̂ E(θG) + βEf(θ(1)(θG)) =

V̂ E(θG)
1 − β

Since V̂ E(θ) = a and V̂ E(θ) is decreasing in θ, we must then have that θ ≤ θG. Observe

now that

Tf(θ) = max
{

a

1 − β
, f(θ)

}
> f(θ)
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for all θ ∈ (θ, 1]. Since ∃θ ∈supp(θ(1)(θ)) such that θ > θ, we then have that

ETf(θ(1)(θ)) > Ef(θ(1)(θ)) = f(θ).

Therefore

V̂ E(θ) + βETf(θ(1)(θ)) > V̂ E(θ) + βf(θ) =
V̂ E(θ)
1 − β

=
a

1 − β
,

from which we can conclude that:

T 2f(θ) = max
{

a

1 − β
, V̂ E(θ) + βEf(θ(1)(θ))

}
>

V̂ E(θ)
1 − β

= f(θ).

Consequently f(θ) < lim
n→∞Tnf(θ) = υ(θ). Hence:

υ(θ) > f(θ) =
a

1 − β
= υ(θG) =⇒ θG > θ,

which ends our proof.

Proposition 2.3 For all t, we have:

(i) µt+1(mi) ≤ µt(mi), i = L, H;

(ii) µt(mH) − µt+1(mH) ≥ µt(mL) − µt+1(mL). In particular µt(mL) ≥ µt(mH).

(iii) Moreover, for every γ there exists a t such that, for all t > t, the above inequalities

are strict.

Proof. Note that (i) is immediate, since autarky is an absorbing state. So we just have to

prove (ii) and (iii).

(ii) We know that for m ∈ {mL, mH}, and for all t ≥ 2,

µt(m) =
∑

(c1,...,ct−1)∈Ct−1

Bt−1m
c1+···+ct−1(1 − m)(t−1)(n+1)−c1−···−ct−1 ,

where

Bt−1 =
(

n + 1
c1

)
· · ·

(
n + 1
ct−1

)
,
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and

Ct−1 = {(c1, . . . , ct−1) | cτ ≤ 	τα(n + 1) + γ
 : for : τ = 1, . . . , t − 1}

is the set of feasible cardinalities. The fraction of individuals leaving the economy between

periods t and t + 1 is given by µt(m) − µt+1(m) = Lt(m). Remembering that µ1(m) = 1,

we can show that for all t ≥ 1,

Lt(m) =
∑

(c1,...,ct)∈Ct

Btm
c1+···+ct(1 − m)t(n+1)−c1−···−ct ,

where C1 = {c1 : c1 ≥ 	α(n + 1) + γ
 + 1} and

Ct = {(c1, . . . , ct) | (c1, . . . , ct−1) ∈ Ct−1, ct ≥ 	tα(n + 1) + γ
 − c1 − · · · − ct−1 + 1},

for t ≥ 2. Therefore,

Lt(mL) − Lt(mH) =∑
(c1,...,ct)∈Ct

Btm
c1+···+ct
L (1 − mH)t(n+1)−c1−···−ct

[(
1 − mL

1 − mH

)t(n+1)−c1−···−ct

−
(

mH

mL

)c1+···+ct
]

.

Observe now that

(
1 − mL

1 − mH

)t(n+1)−c1−···−ct

<

(
mH

mL

)c1+···+ct

(2.6)

if, and only if, c1 + · · · + ct > αt(n + 1). But (c1, . . . , ct) ∈ Ct implies that

c1 + · · · + ct ≥ 	tα(n + 1) + γ
 + 1 ≥ tα(n + 1),

and so (2.6) is true for all (c1, . . . , ct) ∈ Ct. Consequently Lt(mL) − Lt(mH) ≤ 0, since Ct

might be empty (if γ is high, for example). But

Lt(mL) − Lt(mH) = µt(mL) − µt+1(mL) − (µt(mH) − µt+1(mH)),
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and so we can conclude that for allt ≥ 1

µt(mL) − µt+1(mL) ≤ µt(mH) − µt+1(mH).

(iii) According to the proof of (ii), we just need to show that Ct will be non-empty if t is

sufficiently large. Let t be the smallest positive integer such that t(n+1) > 	tα(n+1)+γ
.

Since γ is finite for every choice of the initial belief θ0 (as long as θ0 > 0), such a t will always

exist. By definition, if t < t, then t(n + 1) ≤ 	tα(n + 1) + γ
, and so (c1, . . . , ct−1) ∈ Ct−1 if

we let cτ = (n+1), τ = 1, . . . , t−1. But if we also let ct = (n+1), then c1+· · ·+ct = t(n+1),

and so (c1, . . . , ct) ∈ Ct. Therefore Ct is not empty if t = t. It is now easy to see that if Ct

is not empty, then Ct
′ will be non-empty for all t

′
> t.

Proposition 2.4 lim
t→∞µt(mH) = 0 and lim

t→∞µt(mL) = µL > 0.

Proof. First note that

(
n + 1

c1

)
· · ·

(
n + 1
ct−1

)
≤

(
(t − 1)(n + 1)
c1 + · · · + ct−1

)
,

and that

Ct−1 ⊂ {(c1, . . . , ct−1) | c1 + · · · + ct−1 ≤ 	(t − 1)α(n + 1) + γ
}.

Hence

µt(mH) ≤
�(t−1)α(n+1)+γ�∑

k=0

(
(t − 1)(n + 1)

k

)
mk

H(1 − mH)(t−1)(n+1)−k

= Pr{S(t−1)(n+1)(mH) ≤ 	(t − 1)α(n + 1) + γ
},

where S(t−1)(n+1)(mH) denotes the number o successes of (t−1)(n+1) Bernoulli trials when

the probability of success is mH . By the law of large numbers for the Binomial distribution

(see Feller, chapter 6), we know that for all ε > 0,
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lim
t→∞Pr{S(t−1)(n+1)(mH) < (t − 1)(n + 1)[mH − ε]} = 0. (2.7)

But, since α < mH , we know that ∃t such that if t ≥ t, then 	(t − 1)α(n + 1) + γ
 <

(t − 1)(n + 1)mH . Let ε = mH − (	(t − 1)α(n + 1) + γ
)/(t − 1)(n + 1) > 0. Then, for any

t ≥ t,

Pr{S(t−1)(n+1)(mH) ≤ 	(t − 1)α(n + 1) + γ
} ≤

Pr{S(t−1)(n+1)(mH) ≤ (t − 1)(n + 1)[mH − ε]},

and we can apply (2.7) to conclude that µt(mH) → 0 as t goes to infinity.

For the asymptotic behavior of µt(mL), observe that {µt(mL)} is a bounded and de-

creasing sequence. Therefore it must have a limit. The above result, together with (ii) of

proposition 2.3, implies that this limit must be strictly positive.

Proposition 2.5 There exists a unique δ ∈ [0, 1) such that U(mL, δ) = U(mH , δ). More-

over, if δ > δ then U(mL, δ) > U(mH , δ) and if δ < δ, U(mL, δ) < U(mH , δ)

Proof. Let F (δ) be given by

F (δ) =
1
v

[U(mL, δ) − U(mH , δ)] =
∞∑

t=1

δt−1dt,

where dt = µt(mL)mL − µt(mH)mH . We want to show that ∃δ ∈ [0, 1) such that F (δ) < 0

if δ < δ, and F (δ) > 0 if δ > δ . First note that

F (k)(δ) =
∞∑

t=k+1

(t − 1)(t − 2) . . . (t − k)δt−k−1dt.
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Since µt(mL) decreases (monotonically) to some µL > 0 and µt(mH) decreases (monotoni-

cally) to zero, we have that ∃t
′ ≥ k + 1 such that if t ≥ t

′
, then dt ≥ 1

4µLmL. Therefore,

F (k)(δ) ≥
t
′−1∑

t=k+1

(t − 1) . . . (t − k)δt−k−1dt +
µL

4

∞∑
t=t

′
(t − 1) . . . (t − k)δt−k−1,

and so, since the first term after the above inequality is finite for all δ, we can conclude that

∀k ≥ 0,

lim
δ→1−

F (k)(δ) = +∞.

Let now t be the smallest integer such that dt > 0 for all t ≥ t. Such a t exists because

of the asymptotic behavior of the population measures in the 2 regimes. Since

F (t−1)(δ) =
∞∑
t=t

(t − 1) . . . (t − t + 1)δt−tdt,

we have that F (t−1)(δ) > 0 for all δ > 0. If t = 1, we are done, just set δ = 0.

So, suppose that t > 1. Now observe that

F (t−2)(δ) =
∞∑

t=t−1

(t − 1) . . . (t − t + 2)δt−t+1dt

= (t − 2) . . . 2dt−1 +
∞∑
t=t

(t − 1) . . . (t − t + 2)dt,

and so F (t−2)(0) ≤ 0. Since F (t−2)(.) is strictly increasing and F (t−2)(1−) = +∞, we have

that there exists a unique δ1 such that F (t−2)(δ) < 0 if, and only if, δ < δ1. If t = 2, we are

done, just set δ = δ1.

So, suppose now that t > 2. The same reasoning as above shows that F (t−3)(0) < 0.

Since F (t−3)(δ) decreases until δ1, and after this point it increases strictly to +∞, we have

that there is a unique δ2 > δ1 such that F (t−3)(δ) < 0 if, and only if δ < δ2. If t = 3, we

are again done. If t > 3, we can continue with this process. Since t is finite, we eventually

reach an end to it.
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Proposition 2.7 The sequence {υn} of value functions converges uniformly to

V(θ) = max

{
a

1 − β
, V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ E(mL)
1 − β

]}

Proof. Let S be the set given by

S =
∞∏
i=1

C[0, 1],

the infinite cartesian product of the set C[0, 1]. Then {υn} is a fixed point of the map

Γ : S → S defined by (Γf)n(θ) = Tfn(θ); that is,

(Γf)n(θ) = max
{

a

1 − β
, V̂ E

n (θ) + βEfn(θ1(θ, n))
}

.

The proof is quite long, so we give an outline of it before getting into the details. The first

thing we do is define a topology on S such that it becomes a complete topological (vector)

space with a countable basis. Since S has a countable basis, it is metrizable. We exhibit

a metric on S that is compatible with the topology we defined on it and show that Γ is a

contraction with respect to this metric. Therefore Γ has a unique fixed point, {υn}. Then

we show that the set X = {f ∈ S : {fn} is uniformly convergent} is a closed subset of S,

and that Γ maps X into itself. This completes the proof.

(1) Let pn(f) =‖ fn ‖ sup, where ‖ . ‖ sup is the sup norm in C[0, 1]. Then pn is a semi-norm

on S, and the collection P = {pn, n ∈ N} is a separating family of semi-norms on S. Indeed,

if pn(f) = 0 for all n, then fn = 0 for all n, which implies that f = 0. For each pn ∈ P and

each k ∈ N, set

B(pn, k) =
{

f ∈ S : pn(f) <
1
k

}
,

and let B be the collection of all finite intersections of sets of the above form. Then (see

Rudin, Functional Analysis, Theorem 1.37), B is a local base for a vector topology τ on S

71



(S is a vector space with the vector operations defined in the usual way). From now on,

S will denote the topological vector space (S, τ) just defined. Because P is countable, B is

countable. Hence S is a topological vector space with a countable local base, and so it is

metrizable (see Rudin, Functional Analysis, Theorem 1.24); i.e., there exists a metric d on

S such that the topology induced by d on S coincides with τ (we say that d is compatible

with τ).

To show that S is complete, suppose that {fn} is a Cauchy sequence in S. This means

that ∀B ∈ B, ∃N ∈ N such that if m, n ≥ N , then fm − fn ∈ B. In particular, given

n ∈ N, we have that ∀k ∈ N, ∃N such that if m, m
′ ≥ N , then

fm − fm
′
∈ B(pn, k) ⇒‖ fm

n − fm
′

n ‖ sup<
1
k
.

This implies that {fm
n } is a Cauchy sequence in C[0, 1] for all n ∈ N. Since this space is

complete, {fm
n } is convergent in C[0, 1] for all n ∈ N. Let fn be its limit. We want to

show that {fm} converges to f = (f1, . . . , fn, . . .) in S. For this, let V ∈ B. We know that

∃pn1 , . . . , pnj ∈ P and ∃k1, . . . , kj ∈ N such that V = ∩j
i=1B(pni , ki). Since fm

n → fn for all

n ∈ N, ∃Ni ∈ N such that if m ≥ Ni, then ‖ fm
ni

− fni ‖ sup<
1
ki

for i = 1, . . . , j. If we let

N = max{N1, . . . , Nj}, m ≥ N implies that fm − f ∈ V . Consequently fm → f in S, and

so S is complete.

(2) Let d : S × S → R+ be such that

d(f, g) = max
n

cnpn(f − g)
1 + pn(f − g)

,

where {cn} is some strictly positive sequence of real numbers such that cn converges to zero.

Then one can show (see Rudin, Functional Analysis, Remark 1.38) that d is a metric on

S that is compatible with the vector topology τ we defined in (1). We will now establish

that Γ, the map we defined at the very beginning, is a contraction. For this, suppose, by
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contradiction, that there is no δ < 1 such that d(Γf, Γg) ≤ δd(f, g). So, for all n ∈ N,

∃j(n) ∈ N such that

cj(n) ‖ Tfj(n) − Tgj(n) ‖:sup

1+ ‖ Tfj(n) − Tgj(n) ‖:sup
>

(
1 − 1

n

)
max

k

ck ‖ fk − gk ‖:sup

1+ ‖ fk − gk ‖:sup

≥
(

1 − 1
n

)
cj(n) ‖ fj(n) − gj(n) ‖:sup

1+ ‖ fj(n) − gj(n) ‖:sup
.

This implies that

‖ Tfj(n) − Tgj(n) ‖ sup −β ‖ fj(n) − gj(n) ‖ sup

dj(n)
:>(

1 − 1
n
− β

) ‖ fj(n) − gj(n) ‖:sup

dj(n)

− 1
n

‖ Tfj(n) − Tgj(n) ‖:sup‖ fj(n) − gj(n) ‖:sup

dj(n)︸ ︷︷ ︸
ej(n)

,

where dj = (1+ ‖ Tfj − Tgj ‖:sup)(1+ ‖ fj − gj ‖:sup). But {ej(n)} is a bounded sequence,

and so 1
nej(n) must converge to zero. Since 1− 1

n − β converges to 1− β > 0, we then have

that if n is sufficiently large, the right-hand side of the above inequality will be positive.

Hence, if we take n large enough,

‖ Tfj(n) − Tgj(n) ‖:sup> β ‖ fj(n) − gj(n) ‖:sup,

which contradicts the fact that ∀j ∈ N the map fj �→ (Γf)j = Tfj is a contraction of

modulus β. Consequently Γ is a contraction in S, which allows us to conclude that {υn} is

its unique fixed point.

(3) Let now X = {f ∈ S : {fn} is uniformly convergent} and suppose that {fm} is a

sequence in X such that fm → f in S. We want to show that f ∈ X ; that is, that {fn} is

uniformly convergent. We have seen in (1) that if {fm} is convergent in S, then {fm
n } is

uniformly convergent for all n, and it must converge to fn. Now observe that ∀θ ∈ [0, 1],

fn(θ) − fn
′ (θ) = fn(θ) − fm

n (θ) + fm
n (θ) − fm

n
′ (θ) + fm

n
′ (θ) − fn

′ (θ),
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where the choice of m is arbitrary, so that

|fn(θ) − fn′ (θ)| ≤‖ fn − fm
n ‖ sup + ‖ fm

n − fm
n
′ ‖ sup + ‖ fm

n
′ − fn′ ‖ sup .

Take ε > 0. Since {fm
q } is uniformly convergent for all m by hypothesis, we know that ∃N

such that if n, n
′ ≥ N , then ‖ fm

n − fm
n′ ‖ sup<

ε
3 . Take then n, n

′
greater than N . Because

{fm
n } and {fm

n′ } converge uniformly to fn and fn
′ , respectively, there is m0(n, n

′
) ∈ N such

that if m ≥ m0, ‖ fn−fm
n ‖ sup<

ε
3 and ‖ fm

n′ −fn
′ ‖ sup<

ε
3 . If we now take m ≥ m0, we can

conclude that |fn(θ)−fn
′ (θ)| < ε for all θ ∈ [0, 1]; that is, ‖ fn −fn

′ ‖ sup< ε. Consequently

{fn} is Cauchy, and so uniformly convergent. This proves that X is indeed a closed subset

of S.

(4) To finish, we want to show that if {fn} is uniformly convergent, then {Tfn} will also

be. For this, let f be the uniform limit of {fn}, and let

Tf(θ) = max
{

a

1 − β
, V̂ E(θ) + β[θf(1) + (1 − θ)f(0)]

}
,

where V̂ E is the uniform limit of V̂ E
n . Remember that

V̂ E
n (θ) =

1
n

[θV E(mH) + (1 − θ)V E(mL)],

with V E(m) = nm(1 − m)u + mu, and so

V̂ E(θ) = θmH(1 − mH)u + (1 − θ)mL(1 − mL)u.

Since max{g, h} − max{m, n} ≤ max{g − m, h − n}, we have that

Tfn(θ) − Tf(θ) ≤ max
{

0, V̂ E
n (θ) − V̂ E(θ) : +

β[Efn(θ1(θ, n)) − θf(1) − (1 − θ)f(0)]
}

.

First observe that |V̂ E
n (θ) − V̂ E(θ)| ≤‖ V̂ E

n − V̂ E ‖:sup for all θ ∈ [0, 1], and that ‖ V̂ E
n −
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V̂ E ‖:sup→ 0 by construction. Now note that

Efn(θ1(θ, n)) − [θf(1) + (1 − θ)f(0)] :=

Efn(θ1(θ, n)) − Ef(θ1(θ, n)) : +

Ef(θ1(θ, n)) − [θf(1) + (1 − θ)f(0)].

However,

|Efn(θ1(θ, n)) − Ef(θ1(θ, n))| = |E(fn − f)(θ1(θ, n))| ≤‖ fn − f ‖:sup,

and ‖ fn − f ‖:sup→ 0 by hypothesis. So we’re left with the term

Ef(θ1(θ, n)) − [θf(1) + (1 − θ)f(0)].

If we can show that Ef(θ1(θ, n)) converges uniformly to θf(1) + (1 − θ)f(0) we are done.

For this, note first that we can assume that the sequence {fn} is such that

θfn(1) + (1 − θ)fn(0) ≥ Efn(θ1(θ, n))

for all n ∈ N and all θ ∈ [0, 1] (see (5) below). But we have seen above that the uniform

convergence of fn to f implies that Efn(θ1(θ, n)) − Ef(θ1(θ, n)) converges uniformly to

zero. Moreover, it is easy to see that θfn(1) + (1 − θ)fn(0) converges uniformly to θf(1) +

(1 − θ)f(0). Therefore, ∃n such that if n ≥ n, then

θf(1) + (1 − θ)f(0) ≥ Ef(θ1(θ, n))

for all θ ∈ [0, 1]. If we let hn(θ) = Ef(θ1(θ, n)) and h(θ) = θf(1) + (1 − θ)f(0), we have

thus established that if n ≥ n, hn(θ) ≤ h(θ) for all θ ∈ [0, 1]. Since θ1(θ, n) converges

in distribution to θδ(1) + (1 − θ)δ(0), where δ(x) is the probability distribution putting

all mass on x ∈ R, we know that if g is any continuous function, then Eg(θ1(θ, n)) →

75



θg(1)+ (1− θ)g(0) pointwisely. Hence hn(θ) also converges pointwisely to h(θ) in [0, 1]. So,

for all θ ∈ [0, 1] there is a subsequence of {hn(θ)} that increases monotonically to h(θ). This

allows us to construct o subsequence {hnk
} of {hn} with the property that hnk

(θ) increases

monotonically to h(θ) for ∀θ ∈ D, where D is a dense subset of the [0, 1] interval—just

apply a standard diagonal method to obtain a subsequence {hnk
} of {hn} with the desired

property on the (countable) set of rational numbers in [0, 1]. But all hn are continuous

functions of θ, and so {hnk
} must be monotonically increasing in all of [0, 1]. We can

then conclude that {hnk
} converges uniformly to h, since every sequence of functions that

converges pointwisely and monotonically in a compact set must be uniformly convergent

(see Rudin, Principles of Mathematical Analysis, Theorem 7.13).

In fact, this reasoning implies that any subsequence of {hn} has a uniformly convergent

subsequence. Let E = {hn}. Then E is a set of continuous functions defined on a compact

set with the property that every sequence in E has a uniformly convergent subsequence.

This implies that E is equicontinuous. Therefore {hn} is an equicontinuous sequence of

functions defined on a compact set that converges pointwisely. This allows us to conclude

(see Rudin, Principles of Mathematical Analysis, pg. 168) that {hn} converges uniformly.

(5) The only thing left to do is to prove the claim made in (4) that we can assume fn to

satisfy

θfn(1) + (1 − θ)fn(0) ≥ Efn(θ1(θ, n)) (1)

for every n ∈ N and for all θ ∈ [0, 1]. Notice first of all that the set Y = {f ∈ S |

f satisfies (1) for all

n ∈ N} is a closed subset of S: remember that if {fm} is a convergent sequence in S,

the topology we defined on S implies that {fm
n } is uniformly convergent for all n; a stan-

dard ε
3 argument then allows us to prove this fact. So we just have to prove that T maps
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Y into itself. Since

Tfn(x) = max
{

a

1 − β
, V̂ E

n (x) + βEfn(θ(1)(x, n))
}

for x ∈ {0, 1}, we have that

θTfn(1) + (1 − θ)Tfn(0) ≥ max
{

a

1 − β
, V̂ E

n (θ) + β[θfn(1) + (1 − θ)fn(0)]
}

≥ max
{

a

1 − β
, V̂ E

n (θ) + βEfn(θ1(θ, n))
}

= Tfn(θ),

by hypothesis. So, if we let H(θ) = θTfn(1) + (1 − θ)Tfn(0),

EH(θ1(θ, n)) = θTfn(1) + (1 − θ)Tfn(0) ≥ ETfn(θ1(θ, n)),

which shows that Y is indeed mapped into itself by T . One last remark is that Y is not

empty, even when we restrict ourselves to the subset of f ∈ S where fn is non-increasing in

θ. Just take fn = constant, for example.

The argument in (1)–(5) shows that the sequence {υn} of value functions is uniformly

convergent. From (4) we can conclude that its uniform limit must be

V(θ) = max

{
a

1 − β
, V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ E(mL)
1 − β

]}
.

Corollary 2.1 ∃ρ′ < 1 such that θG(n) ≤ ρ′ for all n.

Proof. Suppose, by contradiction, that θG(n) > ρ, with ρ > θ̃, for infinitely many n′s. Since

θG(n) < 1 for all n, there exists a converging subsequence of {θG(n)} with the property

that its limit is θ ≥ ρ. Denote it by θG(nk). Now observe that:

υnk
(θG(nk)) = V̂ E(θG(nk)) + βEυnk

(θ(1)(θG(nk), nk)) =
a

1 − β
.
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Since {υn} converges uniformly to V(θ), we have that

lim
k→∞

υnk
(θG(nk)) = V(θ).

Here we are using the fact that if {fn} is uniformly convergent to f and {xn} is a sequence

of points that converges to x, then limn→∞ fn(xn) = f(x). Because {hn}, with hn(θ) =

Eυn(θ(1)(θ, n)), converges uniformly to h(θ) = θV(1) + (1 − θ)V(0), we also have that

lim
n→∞ υnk

(θ(1)(θG(nk), nk)) = θV(1) + (1 − θ)V(0)

Hence, since θ ≥ ρ > θ̃, we have

a

1 − β
= υnk

(θG(nk)) → V̂ E(θ) + β

[
θ

a

1 − β
+ (1 − θ)

V̂ (mL)
1 − β

]
<

a

1 − β
,

a contradiction. Therefore, ∃ρ < 1 and ∃n such that if n > n, then θG(n) ≤ ρ. Now let

ρ′ = max{θG(1), . . . , θG(n − 1), ρ}. Since we know that θG(n) < 1 for all n ∈ N, we have

that ρ′ < 1 and θG(n) ≤ ρ′ for all n.

Proposition 2.8 For every δ > (mH − mL)/mH , there exists n(δ) such that, for all n ≥

n(δ), U(mL, δ, n) > U(mH , δ, n).

Proof. We first need to prove that ∀t ≥ 2, µt(mH , n) → 0 and µt(mL, n) → 1 as n → ∞.

(1) We know, from the proof of proposition 2.4, that

µt(mH) ≤ Pr{S(t−1)(n+1)(mH) ≤ 	(t − 1)α(n + 1) + γ(θG(n))
},

where, as we have seen before,

γ(θG(n)) =
ln

(
θG(n)(1−θ0)
θ0(1−θG(n))

)
ln

(
1−mL
1−mH

.mH
mL

) ,

and S(t−1)(n+1)(mH) denotes the number of successes in (t− 1)(n + 1) Binomial trials with

probability of success being given by mH . Since, by proposition 2.2 and corollary 2.1,
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θ < θG(n) < ρ for all n ∈ N, where ρ < 1, we have that {γ(θG(n))} is bounded. Therefore,

by applying the law of large numbers for the Binomial distribution in exactly the same way

as we did in the proof of proposition 2.4, we can conclude that, indeed, µt(mH , n) → 0 as

n → ∞ for all t ≥ 2.

(2) To prove that µt(mL, n) → 1 as n → ∞ for all t ≥ 2, we need a different argument.

From the proof of proposition 2.3 we know that for all t ≥ 1,

µt(mL, n) − µt+1(mL, n) =

∑
(c1,...,ct)∈Ct

(
n + 1

c1

)
· · ·

(
n + 1

ct

)
mc1+..+ct

L (1 − mL)t(n+1)−...ct ,

where Ct = {(c1, . . . , ct) | (c1, . . . , ct−1) ∈ Ct−1, ct ≥ 	tα(n + 1) + γ(θG(n)) − c1 − · · · −

ct−1
 + 1}. Therefore,

µt(mL, n) − µt+1(mL, n) ≤
t(n+1)∑

�tα(n+1)+γ(θG(n))�+1

(
t(n + 1)

c

)
mc

L(1 − mL)t(n+1)−c

= Pr{St(n+1)(mL) ≥ 	tα(n + 1) + γ(θG(n))
 + 1}

≤ Pr{St(n+1)(mL) ≥ tα(n + 1) + γ(θG(n))}.

Since mL < α, we can once more apply the law of large numbers for the Binomial dis-

tribution, and obtain that for all t ≥ 1, µt(mL, n) − µt+1(mL, n) → 0 as n → ∞. Since

µ1(mL, n) = 1 for all n, we can then conclude that µt(mL, n) → 1 for all t ≥ 2.

Now we’re ready to prove our claim. For this, suppose δ > (mH − mL)/mH and let

ε =
mL

1 − δ
− mH > 0.

Since µ2(mH , n) → 0, ∃n1(δ) such that if n ≥ n1(δ), then µ2(mH , n) ≤ ε(1−δ)
4mHδ . Moreover,

since µt+1(mH , n) ≤ µt(mH , n) for all t and n, we have, in fact, that if n ≥ n1(δ), then
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µt(mH , n) ≤ ε(1−δ)
4mHδ for all t ≥ 2. Therefore,

U(mH , δ, n) =
∞∑

t=1

δt−1mHµt(mH , n)v <
(
mH +

ε

4

)
v

whenever n ≥ n1(δ). We now need to find an appropriate lower bound for U(mL, δ, n). For

this, let n2(δ, t) be such that if n ≥ n2(δ, t), then µt(mL, n) > 1 − ε
4NmLδt−1 , where N is

such that

1 − δN+1

1 − δ
mL − mH − ε

2
> 0.

We know that such an N exists by hypothesis. The existence of an n2(δ, t) with the desired

property is guaranteed by (2). Now let n2(δ) = max{n2(δ, t) | t = 2, . . . , N}. If n ≥ n2(δ),

U(mL, δ, n) =
∞∑

t=1

δt−1mLµt(mL, n)v >

(
mL

1 − δ
(1 − δN+1) − ε

4

)
v.

Hence, if n ≥ n(δ), with n(δ) = max{n1(δ), n2(δ)},

U(mL, δ, n) − U(mH , δ, n) =
(

1 − δN+1

1 − δ
mL − mH − ε

2

)
v > 0.

Proposition 2.9 For all n ∈ N , υn(θ, λ, φ) is a decreasing function of θ.

Proof. We have to show that the mapping T : C[0, 1]3 → C[0, 1]3 given by

Tf(θ, λ, φ) = max
{

a + f((1 − λ)θ + λφ, λ, φ), V̂ E
n (θ) + βEf(θ(1)(θ, λ, φ), λ, φ)

}
is a contraction, and sends the set D = {f ∈ C[0, 1]3 | f : is:non-increasing:in:θ} into itself.

For the sake of brevity, we are omitting n from now on. That T is a contraction follows

immediately from the fact that

Tf(θ, λ, φ) − Tg(θ, λ, φ) : ≤ β max{f((1 − λ)θ + λφ, λ, φ) − g((1 − λ)θ + λφ, λ, φ),

Ef(θ(1)(θ, λ, φ), λ, φ) − Eg(θ(1)(θ, λ, φ), λ, φ)}
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and

|Ef(θ(1)(θ, λ), λ) − Eg(θ(1)(θ, λ), λ)| ≤‖ f − g ‖:sup,

where ‖ . ‖:sup is the sup-norm on C[0, 1]3. To show that T sends D into itself we have

to check that for all λ ∈ [0, 1], θ(1)(θ
′
, λ, φ) first order stochastically dominates θ(1)(θ, λ, φ)

when θ
′

> θ. If we look at the proof of proposition 1, the facts needed to show that

θ(1)(θ
′
, 0, φ) first order stochastically dominates θ(1)(θ, 0, φ) when θ

′
> θ, were that the next

period’s beliefs are an increasing function of θ, the present belief, and of the number of

meetings in the present period. But these 2 facts hold for any value of λ and φ, and so the

desired result holds. Consequently, υ(θ, λ, φ) is decreasing in θ, since the maximum between

two functions that are decreasing in θ is also decreasing in θ.

Lemma 2.1 (i) νt(θ, mL) ≥ νt(θ, mH), for all θ ∈ (0, 1) and for all t ≥ 1

(ii) ν1(θ, mL)− ν1(θ, mH) increases with θ in [0, θG(λ)].

Proof. The first thing that we need to do is obtain an expression for the probabilities

νt(θ, m), m ∈ {mL, mH}. Following the reasoning presented in the text before the statement

of this lemma, it is easy to see that

ν1(θ, m) =
∑

{c≤�α(n+1)+γ(θ)�}

(
n + 1

c

)
mc(1 − m)n+1−c = Pr{θ1(θ, λ) ≤ θG(λ) | m}.

Now let Ω = {S : |S| < ∞ : and : S ⊂ [0, 1]}, the set of all finite subsets of [0, 1], and

consider the correspondence χ : Ω → Ω such that

χ(Ω) =
⋃
θ∈S

supp{θ(1)(θ, λ)}.

The correspondence χ maps any finite set of beliefs S into the set of next period’s beliefs

that can arise from the elements of S. Then we have that

ν2(θ, m) =
∑

θ̃∈χ({θ})∩[0,θG]

∑
{c≤�α(n+1)+γ(θ̃)�}

(
n + 1

c

)
mc

L(1 − mL)n+1−c Pr{θ(1)(θ, λ) = θ̃|m},
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where Pr{θ(1)(θ, λ) = θ̃|m} is the probability that the next period’s belief is θ̃ ∈ χ({θ}),

given that the bank chooses m ∈ {mL, mH} in the present period. The rationale for this

expression is almost identical to the one given in section 3 to justify the expressions for

µt(m). Anyway, we are going to present it here: If in the next period (t = 1) the agent

has a prior θ̃ ∈ χ({θ}) ∩ [0, θG], so that he decides to enter the economy, his probability of

staying in the economy for one more period (t = 2) is

∑
{c≤�α(n+1)+γ(θ̃)�}

(
n + 1

c

)
mc

L(1 − mL)n+1−c = p(θ̃),

since the bank is assumed to be choosing mL from t = 1 on. To obtain ν2(θ, m) we must

multiply p(θ̃) by the probability that θ̃ happens, and then sum over all possible beliefs in

t = 1 for which the agent decides to stay in the economy.

If we let

R(n)({θ}) = χ(R(n−1)({θ})) ∩ [0, θG],

with R(0)({θ}) = {θ}, the above reasoning in fact shows that for all t ≥ 2,

νt(θ, m) =
∑

θ̃∈R(t−1)({θ})

∑
{c≤�α(n+1)+γ(θ̃)�}

(
n + 1

c

)
mc

L(1−mL)n+1−c Pr{θ(t−1)(θ, λ) = θ̃|m}

where Pr{θ(t−1)(θ, λ) = θ̃|m} is the probability that t − 1 periods from now on the agent’s

belief is θ̃, given that the bank chooses m ∈ {mL, mH} in the present period and mL

thereafter.

Now we are ready to prove (i) and (ii).

(i) We will first show that if θ1 > θ2, then θ(t)(θ1, λ)|m first order stochastically dominates

θ(t)(θ2, λ)|m for all t and m ∈ {mL, mH}. For this, note that the statement is true when

t = 1 (see proof of proposition 2.9). Suppose then, by induction, that it is true for some
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k ∈ N. Since

Pr{θ(k+1)(θ, λ) = x|m} =
∑

θ′∈R(1)({θ})
Pr{θ(k)(θ

′
, λ) = x|mL}Pr{θ(1)(θ, λ) = θ

′ |m}

we have that

Pr{θ(k+1)(θ, λ) ≤ x|m} =
∑

θ̃∈[0,x]

∑
θ
′∈R(1)({θ})

Pr{θ(k)(θ
′
, λ) = x|mL}Pr{θ(1)(θ, λ) = θ

′ |m}

=
∑

θ
′∈R(1)({θ})

Pr{θ(k)(θ
′
, λ) ≤ x|mL}Pr{θ(1)(θ, λ) = θ

′ |m}.

But, by our induction hypothesis, we know that Pr{θ(k)(θ
′
, λ) ≤ x|mL} is a decreasing

function of θ
′
. Therefore, since the result is true for t = 1, we have that Pr{θ(k+1)(θ

′
, λ) ≤

x|m} is also decreasing in θ. So, by induction, Pr{θ(k)(θ
′
, λ) ≤ x|m} is decreasing in θ for

all t (and all x).

Now observe that γ(θ) decreases when θ increases, and so

Ψ(θ̃) =
∑

{c≤�α(n+1)+γ(θ̃)�}

(
n + 1

c

)
mc

L(1 − mL)n+1−c

is decreasing in θ̃ (as the set of feasible cardinalities gets smaller). Moreover, we have that

νt(θ, m) =
∑

θ̃∈R(t−1)({θ})
Ψ(θ̃) Pr{θ(t−1)(θ, λ) = θ̃|m} = E[Ψ(θ(t−1)(θ, λ)|m)].

This, together with what we established in the above paragraph, allows us to conclude that

νt(θ, m) must be decreasing in θ. Also observe that θ(1)(θ, λ)|mH first order stochastically

dominates θ(1)(θ, λ)|mL. In fact,

Pr{θ(1)(θ, λ) ≤ x|m} =
∑

{c≤�α(n+1)+γ(x,θ)�}

(
n + 1

c

)
mc(1 − m)n+1−c = f(m, x),

for m ∈ {mL, mH}, and from the proof of proposition (2.3), we have that ∂f/∂m < 0. Note

that this also proves that ν1(θ, mL) ≥ ν1(θ, mH). To finish, note that for all t ≥ 2,

νt(θ, m) =
∑

θ
′∈R(1)({θ})

νt−1(θ
′
, mL) Pr{θ(1)(θ, λ) = θ

′ |m}.
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Therefore, from the fact that νt−1(θ
′
, mL) is decreasing in θ

′
and θ(1)(θ, λ)|mL is first order

stochastically dominated by θ(1)(θ, λ)|mH , we can conclude that νt(θ, mL) ≥ νt(θ, mH) for

all t ≥ 2. This proves (i).

(ii) Note that

ν1(θ, mL) − ν1(θ, mH) =
∑

{c≤�α(n+1)+γ(θ)�}

(
n + 1

c

)
m(c)

where m(c) =
[
mc

L(1 − mL)n+1−c − mc
H(1 − mH)n+1−c

]
Note also that

θ̃G(λ) =
θG(λ) − λθ0

1 − λ
>

θG(λ) − λθG

1 − λ
= θG(λ),

because θ0 < θG(λ). Hence, for any θ ∈ [0, θG(λ)] we have that γ(θ) is positive. Moreover,

we know that γ(θ) is decreasing in θ. Since mc
L(1−mL)n+1−c < mc

H(1−mH)n+1−c if, and

only if c > α(n + 1), we can then conclude that if θ increases, ν1(θ, mL) − ν1(θ, mH) must

decrease.
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